Application of Optical Multiangle Multispectral Reflectance in Land Cover Classification

IF 4.4
Fan Ye;Xiaoning Zhang;Zhengjie Wang;Yifei Wang;Zhaoyang Peng;Tengying Fu;Ziti Jiao;Yanxuan Wu;Yue Wang
{"title":"Application of Optical Multiangle Multispectral Reflectance in Land Cover Classification","authors":"Fan Ye;Xiaoning Zhang;Zhengjie Wang;Yifei Wang;Zhaoyang Peng;Tengying Fu;Ziti Jiao;Yanxuan Wu;Yue Wang","doi":"10.1109/LGRS.2025.3605331","DOIUrl":null,"url":null,"abstract":"Considering the simplicity of flight route planning, orthorectified images obtained from nadir observations are widely used in remote sensing. However, they are always insufficient to represent the anisotropic reflectance and 3-D structural information of objects. Therefore, multiangle observation information can enhance target information and potentially improve the accuracy of target classification and recognition. In this study, we investigated the potential of anisotropic reflectance information in land cover classification. By employing the DJI P4M multispectral observation system, multiangle multispectral reflectance images for five land cover types were captured at bare soil, concrete roads, grassland, apricot tree, and red broom cypress areas. Subsequently, the anisotropic flat index (AFX)-based bidirectional reflectance distribution function (BRDF) archetypes model and the kernel-driven model were used to reconstruct the BRDF. Finally, land cover classification was performed using three types of machine learning algorithm considering different BRDF features and band combinations. The results indicate that, compared to nadir directional reflectance, multiangle feature sets can improve the overall classification accuracy up to 24%. Compared to using single-band information, band combinations can also improve that up to 54%. The overall accuracy using the feature set of kernel-driven model parameters and nadir reflectance was also enhanced significantly, which can reach 86% using green-red-near infrared band combinations. This work demonstrates the contribution of multiangle multispectral information to natural and artificial land cover classification.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11146782/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the simplicity of flight route planning, orthorectified images obtained from nadir observations are widely used in remote sensing. However, they are always insufficient to represent the anisotropic reflectance and 3-D structural information of objects. Therefore, multiangle observation information can enhance target information and potentially improve the accuracy of target classification and recognition. In this study, we investigated the potential of anisotropic reflectance information in land cover classification. By employing the DJI P4M multispectral observation system, multiangle multispectral reflectance images for five land cover types were captured at bare soil, concrete roads, grassland, apricot tree, and red broom cypress areas. Subsequently, the anisotropic flat index (AFX)-based bidirectional reflectance distribution function (BRDF) archetypes model and the kernel-driven model were used to reconstruct the BRDF. Finally, land cover classification was performed using three types of machine learning algorithm considering different BRDF features and band combinations. The results indicate that, compared to nadir directional reflectance, multiangle feature sets can improve the overall classification accuracy up to 24%. Compared to using single-band information, band combinations can also improve that up to 54%. The overall accuracy using the feature set of kernel-driven model parameters and nadir reflectance was also enhanced significantly, which can reach 86% using green-red-near infrared band combinations. This work demonstrates the contribution of multiangle multispectral information to natural and artificial land cover classification.
光学多角度多光谱反射率在土地覆盖分类中的应用
考虑到航路规划的简单性,从最低点观测得到的正校正图像被广泛应用于遥感。然而,它们往往不足以表示物体的各向异性反射率和三维结构信息。因此,多角度观测信息可以增强目标信息,有可能提高目标分类识别的精度。本研究探讨了各向异性反射信息在土地覆盖分类中的潜力。利用大疆P4M多光谱观测系统,在裸土、混凝土道路、草地、杏树、红雀柏等5种土地覆盖类型的多角度多光谱反射率影像进行了采集。随后,采用基于各向异性平坦指数(AFX)的双向反射分布函数(BRDF)原型模型和核驱动模型对BRDF进行重构。最后,基于不同BRDF特征和频带组合,采用三种机器学习算法进行土地覆盖分类。结果表明,与最低方向反射相比,多角度特征集可将整体分类精度提高24%。与使用单波段信息相比,波段组合也可以将其提高54%。使用核驱动模型参数和最低点反射率特征集的总体精度也得到了显著提高,使用绿-红-近红外波段组合的总体精度可达到86%。本研究证明了多角度多光谱信息对自然和人工土地覆盖分类的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信