{"title":"3D modeling of passive safety condensers with CATHARE3 for a high-power pressurized water reactor","authors":"Michel Belliard, Lucie Groussy","doi":"10.1016/j.nucengdes.2025.114391","DOIUrl":null,"url":null,"abstract":"<div><div>In the wake of the Fukushima’s nuclear accident, passive safety systems have gained in appeal to improve a nuclear power plant’s resistance to accidents without requiring external power supplies. SAfety COndensers (SACO) are a promising example of these new systems. These are secondary heat exchangers, immersed in a tertiary pool, attached to the steam piping of Steam Generators (SG). In the event of a failure in the normal water supply to the SG, they take the place of emergency pumps, which require a power supply. Their purpose is to extract residual power from the core by condensation of the secondary steam produced at the SG, and return it in liquid form. Then, the secondary liquid inventory is preserved, preventing the SG from drying out.</div><div>For several years now, CEA, in collaboration with EDF, has been involved in modeling SACO of various designs (straight or “C”-shaped vertical tubes, in a calandria or a small or large pool, etc.) for new reactor concepts. In particular, the 3D modeling of immersed exchangers in a pool, using the CATHARE3 code, challenges the conventional 0D/1D modeling and shows the interest of 3D spatial discretization to better take into account the lateral feed of exchangers. As a result, several 3D SACO models, based on different experimental designs and adapted to the reactor power under consideration, are proposed. There are compared with each other on a typical secondary depressurization transient. Also, the CATHARE3 3D modeling is discussed on a typical station black-out transient for a given type of SACO design.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"445 ","pages":"Article 114391"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325005680","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the wake of the Fukushima’s nuclear accident, passive safety systems have gained in appeal to improve a nuclear power plant’s resistance to accidents without requiring external power supplies. SAfety COndensers (SACO) are a promising example of these new systems. These are secondary heat exchangers, immersed in a tertiary pool, attached to the steam piping of Steam Generators (SG). In the event of a failure in the normal water supply to the SG, they take the place of emergency pumps, which require a power supply. Their purpose is to extract residual power from the core by condensation of the secondary steam produced at the SG, and return it in liquid form. Then, the secondary liquid inventory is preserved, preventing the SG from drying out.
For several years now, CEA, in collaboration with EDF, has been involved in modeling SACO of various designs (straight or “C”-shaped vertical tubes, in a calandria or a small or large pool, etc.) for new reactor concepts. In particular, the 3D modeling of immersed exchangers in a pool, using the CATHARE3 code, challenges the conventional 0D/1D modeling and shows the interest of 3D spatial discretization to better take into account the lateral feed of exchangers. As a result, several 3D SACO models, based on different experimental designs and adapted to the reactor power under consideration, are proposed. There are compared with each other on a typical secondary depressurization transient. Also, the CATHARE3 3D modeling is discussed on a typical station black-out transient for a given type of SACO design.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.