The completeness problem on the pseudo-homothetic Lie group

IF 0.7 4区 数学 Q3 MATHEMATICS
Salah Chaib , Ana Cristina Ferreira , Abdelghani Zeghib
{"title":"The completeness problem on the pseudo-homothetic Lie group","authors":"Salah Chaib ,&nbsp;Ana Cristina Ferreira ,&nbsp;Abdelghani Zeghib","doi":"10.1016/j.difgeo.2025.102288","DOIUrl":null,"url":null,"abstract":"<div><div>Let us call pseudo-homothetic group the non-unimodular 3-dimensional Lie group that is the semi-direct product of <span><math><mi>R</mi></math></span> acting non-semisimply on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. In this article, we solve the geodesic completeness problem on this Lie group. In particular, we exhibit a family of complete metrics such that all geodesics have bounded velocity. As an application, we show that the set of complete metrics is not closed.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"101 ","pages":"Article 102288"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000634","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let us call pseudo-homothetic group the non-unimodular 3-dimensional Lie group that is the semi-direct product of R acting non-semisimply on R2. In this article, we solve the geodesic completeness problem on this Lie group. In particular, we exhibit a family of complete metrics such that all geodesics have bounded velocity. As an application, we show that the set of complete metrics is not closed.
伪齐调李群上的完备性问题
我们称伪同群为非单模的三维李群,它是R作用于R2上的非半单模的半直积。本文解决了该李群上的测地线完备性问题。特别地,我们展示了一组完备的度量,使得所有测地线的速度都有界。作为一个应用程序,我们展示了完整度量的集合不是封闭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信