HIC2 suppresses glioblastoma progression via transcriptional repression of SEMA3A and inhibition of TGF-β signaling

IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Liang Zhang , Jiahao Yang , Xueying Ke , Nan Huang , Dong Zhou , Haiping Cai
{"title":"HIC2 suppresses glioblastoma progression via transcriptional repression of SEMA3A and inhibition of TGF-β signaling","authors":"Liang Zhang ,&nbsp;Jiahao Yang ,&nbsp;Xueying Ke ,&nbsp;Nan Huang ,&nbsp;Dong Zhou ,&nbsp;Haiping Cai","doi":"10.1016/j.freeradbiomed.2025.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Glioblastoma (GBM), the most aggressive primary brain tumor, is associated with dismal clinical outcomes and a critical lack of actionable therapeutic targets. Herein, we report that Hypermethylated in Cancer 2 (HIC2) is significantly downregulated in GBM tissues. <em>In vitro</em>, ectopic overexpression of HIC2 markedly suppresses GBM cell proliferation, invasion, and migration, <em>while</em> in vivo, it substantially inhibits tumor growth and prolongs survival in an orthotopic xenograft model (p &lt; 0.01). Furthermore, HIC2 induces G0/G1 cell cycle arrest and robustly promotes apoptosis. Mechanistically, HIC2 directly binds to the promoter region of Semaphorin 3A (SEMA3A), repressing its transcriptional activity. This transcriptional repression subsequently attenuates TGF-β signaling by diminishing Smad2/3 phosphorylation, a critical regulatory node of this pathway. Collectively, our findings elucidate a previously unrecognized tumor-suppressive mechanism wherein HIC2 inhibits GBM progression through modulation of the SEMA3A-TGF-β signaling axis.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"240 ","pages":"Pages 674-684"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925009621","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma (GBM), the most aggressive primary brain tumor, is associated with dismal clinical outcomes and a critical lack of actionable therapeutic targets. Herein, we report that Hypermethylated in Cancer 2 (HIC2) is significantly downregulated in GBM tissues. In vitro, ectopic overexpression of HIC2 markedly suppresses GBM cell proliferation, invasion, and migration, while in vivo, it substantially inhibits tumor growth and prolongs survival in an orthotopic xenograft model (p < 0.01). Furthermore, HIC2 induces G0/G1 cell cycle arrest and robustly promotes apoptosis. Mechanistically, HIC2 directly binds to the promoter region of Semaphorin 3A (SEMA3A), repressing its transcriptional activity. This transcriptional repression subsequently attenuates TGF-β signaling by diminishing Smad2/3 phosphorylation, a critical regulatory node of this pathway. Collectively, our findings elucidate a previously unrecognized tumor-suppressive mechanism wherein HIC2 inhibits GBM progression through modulation of the SEMA3A-TGF-β signaling axis.

Abstract Image

HIC2通过转录抑制SEMA3A和抑制TGF-β信号传导抑制胶质母细胞瘤的进展
胶质母细胞瘤(GBM)是最具侵袭性的原发性脑肿瘤,其临床结果令人沮丧,并且严重缺乏可行的治疗靶点。在此,我们报告了癌2中的高甲基化(HIC2)在GBM组织中显著下调。在体外,异位过表达HIC2可显著抑制GBM细胞的增殖、侵袭和迁移,而在体内,在原位异种移植模型中,HIC2可显著抑制肿瘤生长并延长存活时间(p < 0.01)。此外,HIC2还能诱导G0/G1细胞周期阻滞,促进细胞凋亡。在机制上,HIC2直接结合信号蛋白3A (SEMA3A)的启动子区域,抑制其转录活性。这种转录抑制随后通过减少Smad2/3磷酸化(该途径的关键调控节点)来减弱TGF-β信号。总的来说,我们的研究结果阐明了一种以前未被认识到的肿瘤抑制机制,其中HIC2通过调节SEMA3A-TGF-β信号轴抑制GBM进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信