A Deep Cross-modal Prompt Learning Network for Artificial Intelligence Generated Image Quality Assessment

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yang Lu , Shuangyao Han , Zilu Zhou , Zifan Yang , Gaowei Zhang , Shaohui Jin , Xiaoheng Jiang , Mingliang Xu
{"title":"A Deep Cross-modal Prompt Learning Network for Artificial Intelligence Generated Image Quality Assessment","authors":"Yang Lu ,&nbsp;Shuangyao Han ,&nbsp;Zilu Zhou ,&nbsp;Zifan Yang ,&nbsp;Gaowei Zhang ,&nbsp;Shaohui Jin ,&nbsp;Xiaoheng Jiang ,&nbsp;Mingliang Xu","doi":"10.1016/j.displa.2025.103208","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, multi-modal vision–language pre-trained models have been extensively adopted as foundational components for developing advanced Artificial Intelligence (AI) systems in computer vision applications. Previous approaches have advanced Artificial Intelligence Generated Image Quality Assessment (AGIQA) research via text-based or visual prompt learning, yet most methods remain constrained to a single modality (language or vision), overlooking the interplay between text and image. To address this issue, we propose a Deep Cross-Modal Prompt Learning Network (DCMPLN) for AGIQA. This model introduces a Multimodal Prompt Attention (MPA) module, employing multi-head attention to enhance the integration of textual and visual prompts. Furthermore, an Image Adapter module is incorporated into the visual pathway to extract novel features and fine-tune pre-trained ones using residual-style fusion. Experimental results on multiple generated image datasets demonstrate that the proposed method outperforms existing state-of-the-art image quality assessment models.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103208"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002458","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, multi-modal vision–language pre-trained models have been extensively adopted as foundational components for developing advanced Artificial Intelligence (AI) systems in computer vision applications. Previous approaches have advanced Artificial Intelligence Generated Image Quality Assessment (AGIQA) research via text-based or visual prompt learning, yet most methods remain constrained to a single modality (language or vision), overlooking the interplay between text and image. To address this issue, we propose a Deep Cross-Modal Prompt Learning Network (DCMPLN) for AGIQA. This model introduces a Multimodal Prompt Attention (MPA) module, employing multi-head attention to enhance the integration of textual and visual prompts. Furthermore, an Image Adapter module is incorporated into the visual pathway to extract novel features and fine-tune pre-trained ones using residual-style fusion. Experimental results on multiple generated image datasets demonstrate that the proposed method outperforms existing state-of-the-art image quality assessment models.
用于人工智能生成图像质量评估的深度跨模态提示学习网络
近年来,多模态视觉语言预训练模型被广泛应用于计算机视觉应用中,作为开发高级人工智能(AI)系统的基础组件。以前的方法通过基于文本或视觉提示学习来推进人工智能生成图像质量评估(AGIQA)研究,但大多数方法仍然局限于单一模式(语言或视觉),忽略了文本和图像之间的相互作用。为了解决这个问题,我们提出了一个深度跨模态提示学习网络(DCMPLN)。该模型引入了多模态提示注意(MPA)模块,利用多头注意来加强文本提示和视觉提示的整合。此外,将图像适配器模块集成到视觉路径中,提取新的特征,并使用残差融合对预训练的特征进行微调。在多个生成的图像数据集上的实验结果表明,该方法优于现有的最先进的图像质量评估模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信