Pamela Franco , Cristian Montalba , Raúl Caulier-Cisterna , Carlos Milovic , Alfonso González , Juan Pablo Ramirez-Mahaluf , Juan Undurraga , Rodrigo Salas , Nicolás Crossley , Cristian Tejos , Sergio Uribe
{"title":"Interpretable machine learning model for characterizing magnetic susceptibility-based biomarkers in first episode psychosis","authors":"Pamela Franco , Cristian Montalba , Raúl Caulier-Cisterna , Carlos Milovic , Alfonso González , Juan Pablo Ramirez-Mahaluf , Juan Undurraga , Rodrigo Salas , Nicolás Crossley , Cristian Tejos , Sergio Uribe","doi":"10.1016/j.cmpb.2025.109067","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><div>Several studies have shown changes in neurochemicals within the deep-brain nuclei of patients with psychosis. These alterations indicate a dysfunction in dopamine within subcortical regions affected by fluctuations in iron concentrations. Quantitative Susceptibility Mapping (QSM) is a method employed to measure iron concentration, offering a potential means to identify dopamine dysfunction in these subcortical areas. This study employed a random forest algorithm to predict susceptibility features of the First-Episode Psychosis (FEP) and the response to antipsychotics using Shapley Additionality Explanation (SHAP) values.</div></div><div><h3>Methods</h3><div>3D multi-echo Gradient Echo (GRE) and T1-weighted GRE were obtained in 61 healthy-volunteers (HV) and 76 FEP patients (32 % Treatment-Resistant Schizophrenia (TRS) and 68 % treatment-Responsive Schizophrenia (RS)) using a 3T Philips Ingenia MRI scanner. QSM and R2* were reconstructed and averaged in twenty-two segmented regions of interest. We used a Sequential Forward Selection as a feature selection algorithm and a Random Forest as a model to predict FEP patients and their response to antipsychotics. We further applied the SHAP framework to identify informative features and their interpretations. Finally, multiple correlation patterns from magnetic susceptibility parameters were extracted using hierarchical clustering.</div></div><div><h3>Results</h3><div>Our approach accurately classifies HV and FEP patients with 76.48 ± 10.73 % accuracy (using four features) and TRS vs RS patients with 76.43 ± 12.57 % accuracy (using four features), using 10-fold stratified cross-validation. The SHAP analyses indicated the top four nonlinear relationships between the selected features. Hierarchical clustering revealed two groups of correlated features for each study.</div></div><div><h3>Conclusions</h3><div>Early prediction of treatment response enables tailored strategies for FEP patients with treatment resistance, ensuring timely and effective interventions.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"272 ","pages":"Article 109067"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725004845","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose
Several studies have shown changes in neurochemicals within the deep-brain nuclei of patients with psychosis. These alterations indicate a dysfunction in dopamine within subcortical regions affected by fluctuations in iron concentrations. Quantitative Susceptibility Mapping (QSM) is a method employed to measure iron concentration, offering a potential means to identify dopamine dysfunction in these subcortical areas. This study employed a random forest algorithm to predict susceptibility features of the First-Episode Psychosis (FEP) and the response to antipsychotics using Shapley Additionality Explanation (SHAP) values.
Methods
3D multi-echo Gradient Echo (GRE) and T1-weighted GRE were obtained in 61 healthy-volunteers (HV) and 76 FEP patients (32 % Treatment-Resistant Schizophrenia (TRS) and 68 % treatment-Responsive Schizophrenia (RS)) using a 3T Philips Ingenia MRI scanner. QSM and R2* were reconstructed and averaged in twenty-two segmented regions of interest. We used a Sequential Forward Selection as a feature selection algorithm and a Random Forest as a model to predict FEP patients and their response to antipsychotics. We further applied the SHAP framework to identify informative features and their interpretations. Finally, multiple correlation patterns from magnetic susceptibility parameters were extracted using hierarchical clustering.
Results
Our approach accurately classifies HV and FEP patients with 76.48 ± 10.73 % accuracy (using four features) and TRS vs RS patients with 76.43 ± 12.57 % accuracy (using four features), using 10-fold stratified cross-validation. The SHAP analyses indicated the top four nonlinear relationships between the selected features. Hierarchical clustering revealed two groups of correlated features for each study.
Conclusions
Early prediction of treatment response enables tailored strategies for FEP patients with treatment resistance, ensuring timely and effective interventions.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.