How many (distinguishable) classes can we identify in single-particle analysis?

O Lauzirika,M Pernica,D Herreros,E Ramírez-Aportela,J Krieger,M Gragera,M Iceta,P Conesa,Y Fonseca,J Jiménez,J Filipovic,J M Carazo,C O S Sorzano
{"title":"How many (distinguishable) classes can we identify in single-particle analysis?","authors":"O Lauzirika,M Pernica,D Herreros,E Ramírez-Aportela,J Krieger,M Gragera,M Iceta,P Conesa,Y Fonseca,J Jiménez,J Filipovic,J M Carazo,C O S Sorzano","doi":"10.1107/s2059798325007831","DOIUrl":null,"url":null,"abstract":"Heterogeneity in cryoEM is essential for capturing the structural variability of macromolecules, reflecting their functional states and biological significance. However, estimating heterogeneity remains challenging due to particle misclassification and algorithmic biases, which can lead to reconstructions that blend distinct conformations or fail to resolve subtle differences. Furthermore, the low signal-to-noise ratio inherent in cryo-EM data makes it nearly impossible to detect minute structural changes, as noise often obscures subtle variations in macromolecular projections. In this paper, we investigate the use of p-values associated with the null hypothesis that the observed classification differs from a random partition of the input data set, thereby providing a statistical framework for determining the number of distinguishable classes present in a given data set.","PeriodicalId":501686,"journal":{"name":"Acta Crystallographica Section D","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/s2059798325007831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneity in cryoEM is essential for capturing the structural variability of macromolecules, reflecting their functional states and biological significance. However, estimating heterogeneity remains challenging due to particle misclassification and algorithmic biases, which can lead to reconstructions that blend distinct conformations or fail to resolve subtle differences. Furthermore, the low signal-to-noise ratio inherent in cryo-EM data makes it nearly impossible to detect minute structural changes, as noise often obscures subtle variations in macromolecular projections. In this paper, we investigate the use of p-values associated with the null hypothesis that the observed classification differs from a random partition of the input data set, thereby providing a statistical framework for determining the number of distinguishable classes present in a given data set.
在单粒子分析中,我们可以识别出多少(可区分的)类别?
低温电镜的异质性对于捕获大分子的结构变异性,反映其功能状态和生物学意义至关重要。然而,由于粒子错误分类和算法偏差,估计异质性仍然具有挑战性,这可能导致混合不同构象的重建或无法解决细微差异。此外,低温电镜数据固有的低信噪比使得几乎不可能检测到微小的结构变化,因为噪声通常会掩盖大分子投影的细微变化。在本文中,我们研究了与观察到的分类不同于输入数据集的随机分区的零假设相关的p值的使用,从而提供了一个统计框架,用于确定给定数据集中存在的可区分类的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信