Yuhong Huang, Yang Liu, Chang Liu, Congyang Yi, Jinsheng Lai, Hongqing Ling, Handong Su, Fangpu Han
{"title":"Distinct evolutionary trajectories of subgenomic centromeres in polyploid wheat","authors":"Yuhong Huang, Yang Liu, Chang Liu, Congyang Yi, Jinsheng Lai, Hongqing Ling, Handong Su, Fangpu Han","doi":"10.1186/s13059-025-03759-4","DOIUrl":null,"url":null,"abstract":"Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution. In this study, we perform a systematic comparative analysis of centromeres in common wheat and its corresponding ancestral species, utilizing the latest comprehensive reference genome assembly available. Our findings reveal that wheat centromeres predominantly consist of five types of centromeric-specific retrotransposon elements (CRWs), with CRW1 and CRW2 being the most prevalent. We identify distinct evolutionary trajectories in the functional centromeres of each subgenome, characterized by variations in copy number, insertion age, and CRW composition. By utilizing CENH3-ChIP data across various ploidy levels, we uncover a series of CRW invasion events that have shaped the evolution of AA subgenome centromeres. Conversely, the evolutionary process of the DD subgenome centromeres involves their expansion from diploid to hexaploid wheat, facilitating adaptation to a larger genomic context. Integration of complete einkorn centromere assemblies and Aegilops tauschii pan-genomes further revealed subgenome-specific centromere evolutionary trajectories. By inclusion of synthetic hexaploid from S2-S3 generations, alongside 2x/6 × natural accessions, we demonstrate that DD subgenome centromere expansion represents a gradual evolutionary process rather than an immediate response to polyploidization. Our study provides a comprehensive landscape of centromere adaptation, evolution, and maturation, along with insights into how retrotransposon invasions drive centromere evolution in polyploid wheat.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"38 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03759-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution. In this study, we perform a systematic comparative analysis of centromeres in common wheat and its corresponding ancestral species, utilizing the latest comprehensive reference genome assembly available. Our findings reveal that wheat centromeres predominantly consist of five types of centromeric-specific retrotransposon elements (CRWs), with CRW1 and CRW2 being the most prevalent. We identify distinct evolutionary trajectories in the functional centromeres of each subgenome, characterized by variations in copy number, insertion age, and CRW composition. By utilizing CENH3-ChIP data across various ploidy levels, we uncover a series of CRW invasion events that have shaped the evolution of AA subgenome centromeres. Conversely, the evolutionary process of the DD subgenome centromeres involves their expansion from diploid to hexaploid wheat, facilitating adaptation to a larger genomic context. Integration of complete einkorn centromere assemblies and Aegilops tauschii pan-genomes further revealed subgenome-specific centromere evolutionary trajectories. By inclusion of synthetic hexaploid from S2-S3 generations, alongside 2x/6 × natural accessions, we demonstrate that DD subgenome centromere expansion represents a gradual evolutionary process rather than an immediate response to polyploidization. Our study provides a comprehensive landscape of centromere adaptation, evolution, and maturation, along with insights into how retrotransposon invasions drive centromere evolution in polyploid wheat.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.