Randomly sparsified Richardson iteration: A dimension‐independent sparse linear solver

IF 2.7 1区 数学 Q1 MATHEMATICS
Jonathan Weare, Robert J. Webber
{"title":"Randomly sparsified Richardson iteration: A dimension‐independent sparse linear solver","authors":"Jonathan Weare, Robert J. Webber","doi":"10.1002/cpa.70012","DOIUrl":null,"url":null,"abstract":"Recently, a class of algorithms combining classical fixed‐point iterations with repeated random sparsification of approximate solution vectors has been successfully applied to eigenproblems with matrices as large as . So far, a complete mathematical explanation for this success has proven elusive.The family of methods has not yet been extended to the important case of linear system solves. In this paper, we propose a new scheme based on repeated random sparsification that is capable of solving sparse linear systems in arbitrarily high dimensions. We provide a complete mathematical analysis of this new algorithm. Our analysis establishes a faster‐than‐Monte Carlo convergence rate and justifies use of the scheme even when the solution is too large to store as a dense vector.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"148 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.70012","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, a class of algorithms combining classical fixed‐point iterations with repeated random sparsification of approximate solution vectors has been successfully applied to eigenproblems with matrices as large as . So far, a complete mathematical explanation for this success has proven elusive.The family of methods has not yet been extended to the important case of linear system solves. In this paper, we propose a new scheme based on repeated random sparsification that is capable of solving sparse linear systems in arbitrarily high dimensions. We provide a complete mathematical analysis of this new algorithm. Our analysis establishes a faster‐than‐Monte Carlo convergence rate and justifies use of the scheme even when the solution is too large to store as a dense vector.
随机稀疏Richardson迭代:一个维数无关的稀疏线性解算器
最近,一类将经典不动点迭代与近似解向量的重复随机稀疏化相结合的算法已经成功地应用于矩阵为。迄今为止,对这一成功的完整数学解释尚不明确。这类方法尚未推广到求解线性系统的重要情况。本文提出了一种基于重复随机稀疏化的求解任意高维稀疏线性系统的新方案。我们对这个新算法进行了完整的数学分析。我们的分析建立了一个比蒙特卡罗更快的收敛速度,并证明了即使解决方案太大而无法作为密集向量存储时也可以使用该方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信