DART: Distribution-Aware Hardware Trojan Detection

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Luke Chen;Youssef Gamal;Yanda Li;Shih-Yuan Yu;Ihsen Alouani;Mohammad Abdullah Al Faruque
{"title":"DART: Distribution-Aware Hardware Trojan Detection","authors":"Luke Chen;Youssef Gamal;Yanda Li;Shih-Yuan Yu;Ihsen Alouani;Mohammad Abdullah Al Faruque","doi":"10.1109/TIFS.2025.3607240","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) has proven effective in Integrated Circuits (IC) security, particularly in Hardware Trojan (HT) detection. However, a model’s generalization potential depends on its ability to address distribution shifts (DS) in unseen data. Mitigating DS enhances a model’s adaptability to novel variations and threats within the dynamic realm of IC designs and HTs. We formulate HT detection as a DS problem, introducing DART, a novel Distribution-Aware HT detection framework, to enhance model generalization. Applying DART on state-of-the-art Graph Neural Network architecture yields up to 22.96% and 17.37% F1-score improvements for unseen IC designs diverging significantly from the training data.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"9600-9609"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11153518/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning (ML) has proven effective in Integrated Circuits (IC) security, particularly in Hardware Trojan (HT) detection. However, a model’s generalization potential depends on its ability to address distribution shifts (DS) in unseen data. Mitigating DS enhances a model’s adaptability to novel variations and threats within the dynamic realm of IC designs and HTs. We formulate HT detection as a DS problem, introducing DART, a novel Distribution-Aware HT detection framework, to enhance model generalization. Applying DART on state-of-the-art Graph Neural Network architecture yields up to 22.96% and 17.37% F1-score improvements for unseen IC designs diverging significantly from the training data.
分布感知硬件木马检测
机器学习(ML)在集成电路(IC)安全方面已被证明是有效的,特别是在硬件木马(HT)检测方面。然而,模型的泛化潜力取决于它在不可见数据中处理分布变化(DS)的能力。缓解DS增强了模型对IC设计和ht动态领域中的新变化和威胁的适应性。我们将高温检测作为一个DS问题,引入了一种新的分布感知高温检测框架DART,以增强模型的泛化。在最先进的图神经网络架构上应用DART,对于与训练数据显著偏离的未见IC设计,f1分数提高了22.96%和17.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信