Neural interaction explainable AI predicts drug response across cancers.

IF 3.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
NAR cancer Pub Date : 2025-09-03 eCollection Date: 2025-09-01 DOI:10.1093/narcan/zcaf029
Philipp Keyl, Julius Keyl, Andreas Mock, Gabriel Dernbach, Liliana H Mochmann, Niklas Kiermeyer, Philipp Jurmeister, Michael Bockmayr, Roland F Schwarz, Grégoire Montavon, Klaus-Robert Müller, Frederick Klauschen
{"title":"Neural interaction explainable AI predicts drug response across cancers.","authors":"Philipp Keyl, Julius Keyl, Andreas Mock, Gabriel Dernbach, Liliana H Mochmann, Niklas Kiermeyer, Philipp Jurmeister, Michael Bockmayr, Roland F Schwarz, Grégoire Montavon, Klaus-Robert Müller, Frederick Klauschen","doi":"10.1093/narcan/zcaf029","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized treatment selection is crucial for cancer patients due to the high variability in drug response. While actionable mutations can increasingly inform treatment decisions, most therapies still rely on population-based approaches. Here, we introduce neural interaction explainable AI (NeurixAI), an explainable and highly scalable deep learning framework that models drug-gene interactions and identifies transcriptomic patterns linked with drug response. Trained on data from 546 646 drug perturbation experiments involving 1135 drugs and molecular profiles from 476 tumors, NeurixAI accurately predicted treatment responses for 272 targeted and 30 chemotherapeutic drugs in unseen tumor samples (Spearman's rho >0.2), maintaining high performance on an external validation set. Additionally, NeurixAI identified the anticancer potential of 160 repurposed non-cancer drugs. Using explainable artificial intelligence (xAI), our framework uncovered key genes influencing drug response at the individual tumor level and revealed both known and novel mechanisms of drug resistance. These findings demonstrate the potential of integrating transcriptomics with xAI to optimize cancer treatment, enable drug repurposing, and identify new therapeutic targets.</p>","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":"7 3","pages":"zcaf029"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcaf029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized treatment selection is crucial for cancer patients due to the high variability in drug response. While actionable mutations can increasingly inform treatment decisions, most therapies still rely on population-based approaches. Here, we introduce neural interaction explainable AI (NeurixAI), an explainable and highly scalable deep learning framework that models drug-gene interactions and identifies transcriptomic patterns linked with drug response. Trained on data from 546 646 drug perturbation experiments involving 1135 drugs and molecular profiles from 476 tumors, NeurixAI accurately predicted treatment responses for 272 targeted and 30 chemotherapeutic drugs in unseen tumor samples (Spearman's rho >0.2), maintaining high performance on an external validation set. Additionally, NeurixAI identified the anticancer potential of 160 repurposed non-cancer drugs. Using explainable artificial intelligence (xAI), our framework uncovered key genes influencing drug response at the individual tumor level and revealed both known and novel mechanisms of drug resistance. These findings demonstrate the potential of integrating transcriptomics with xAI to optimize cancer treatment, enable drug repurposing, and identify new therapeutic targets.

神经相互作用可解释的AI预测癌症的药物反应。
由于药物反应的高度可变性,个性化的治疗选择对癌症患者至关重要。虽然可操作的突变可以越来越多地为治疗决策提供信息,但大多数治疗仍然依赖于基于人群的方法。在这里,我们介绍了神经相互作用可解释的人工智能(NeurixAI),这是一个可解释且高度可扩展的深度学习框架,可以模拟药物-基因相互作用并识别与药物反应相关的转录组模式。在546 646个药物扰动实验数据的训练下,包括来自476个肿瘤的1135种药物和分子图谱,NeurixAI在未见肿瘤样本中准确预测了272种靶向药物和30种化疗药物的治疗反应(Spearman's rho >0.2),在外部验证集上保持了高性能。此外,NeurixAI还发现了160种非癌症药物的抗癌潜力。利用可解释的人工智能(xAI),我们的框架揭示了影响个体肿瘤水平药物反应的关键基因,并揭示了已知和新的耐药机制。这些发现证明了将转录组学与xAI整合在一起的潜力,可以优化癌症治疗,实现药物再利用,并确定新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信