{"title":"Extended Insights Into Advancing Multi-Omics and Prognostic Methods for Cancer Prognosis Forecasting.","authors":"Jindong Xie, Junjie Xu, Zhi Tian, Jian Liang, Hailin Tang","doi":"10.31083/FBL44091","DOIUrl":null,"url":null,"abstract":"<p><p>Zhang <i>et al</i>.'s recent article utilizes comprehensive single-cell data to identify differences in tumor cell populations, highlighting the <i>CKS1B</i>+ malignant cell subcluster as a potential target for immunotherapy. It develops a prognostic and immunotherapeutic signature (PIS) based on this subcluster, demonstrating good performance in predicting lung adenocarcinoma (LUAD) prognosis. The study also validates the role of <i>PSMB7</i> in LUAD progression. However, there are areas for improvement. There is a lack of clarity regarding the relationship between the <i>CKS1B</i>+ malignant cell subcluster and the PIS, particularly in terms of why <i>PSMB7</i> was selected for functional studies. The sequencing data are retrospectively obtained from public databases and lack prospective clinical validation. It is suggested to collect LUAD patient tissues for RT-qPCR and RNA-seq analysis and seek external multi-center validations. Additionally, integrating emerging multi-omics methods is recommended to further validate the findings. Despite these limitations, the study represents progress in understanding LUAD and treatment strategies, and continuous evaluation and refinement of multi-omics and machine learning methods are expected for future research and clinical practice.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"30 8","pages":"44091"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBL44091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Zhang et al.'s recent article utilizes comprehensive single-cell data to identify differences in tumor cell populations, highlighting the CKS1B+ malignant cell subcluster as a potential target for immunotherapy. It develops a prognostic and immunotherapeutic signature (PIS) based on this subcluster, demonstrating good performance in predicting lung adenocarcinoma (LUAD) prognosis. The study also validates the role of PSMB7 in LUAD progression. However, there are areas for improvement. There is a lack of clarity regarding the relationship between the CKS1B+ malignant cell subcluster and the PIS, particularly in terms of why PSMB7 was selected for functional studies. The sequencing data are retrospectively obtained from public databases and lack prospective clinical validation. It is suggested to collect LUAD patient tissues for RT-qPCR and RNA-seq analysis and seek external multi-center validations. Additionally, integrating emerging multi-omics methods is recommended to further validate the findings. Despite these limitations, the study represents progress in understanding LUAD and treatment strategies, and continuous evaluation and refinement of multi-omics and machine learning methods are expected for future research and clinical practice.