{"title":"Molecular Pathogenesis of Sarcopenia: Regulatory Networks Involving MicroRNAs in Age-Related Skeletal Muscle Decline.","authors":"Joseph Joju Kalan, Lijo N Varghese, Rajesh Katare","doi":"10.31083/FBL38106","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcopenia is the progressive loss of skeletal muscle mass, strength, and function, significantly contributing to frailty, disability, and mortality in aging populations. As life expectancy rises, sarcopenia presents a growing public health challenge, increasing healthcare costs, and diminishing quality of life. Despite its prevalence, sarcopenia is often underdiagnosed due to limitations in current diagnostic tools, including the lack of standardized cut-off values and reliance on physical performance tests. The causes of sarcopenia are multifactorial, involving oxidative stress, chronic inflammation, mitochondrial dysfunction, satellite cell depletion, and impaired angiogenesis. Recent research highlights the role of microRNAs (miRs) in regulating these molecular pathways. miRs influence muscle homeostasis by modulating gene expression related to muscle atrophy, apoptosis, inflammation, and insulin resistance. While non-pharmacological interventions such as resistance training and blood flow restriction therapy remain the primary treatment strategies, their effectiveness is often limited in older adults with reduced muscle regenerative capacity. The identification of miRs as biomarkers could enhance early diagnosis and enable more personalized treatment approaches. However, further research is required to validate their clinical utility and therapeutic potential. This review comprehensively analyses the molecular mechanisms underlying sarcopenia, current diagnostic challenges, and emerging miR-based strategies that could transform its management. Future efforts should focus on integrating these molecular insights into clinical practice to improve early detection and intervention strategies.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"30 8","pages":"38106"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBL38106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcopenia is the progressive loss of skeletal muscle mass, strength, and function, significantly contributing to frailty, disability, and mortality in aging populations. As life expectancy rises, sarcopenia presents a growing public health challenge, increasing healthcare costs, and diminishing quality of life. Despite its prevalence, sarcopenia is often underdiagnosed due to limitations in current diagnostic tools, including the lack of standardized cut-off values and reliance on physical performance tests. The causes of sarcopenia are multifactorial, involving oxidative stress, chronic inflammation, mitochondrial dysfunction, satellite cell depletion, and impaired angiogenesis. Recent research highlights the role of microRNAs (miRs) in regulating these molecular pathways. miRs influence muscle homeostasis by modulating gene expression related to muscle atrophy, apoptosis, inflammation, and insulin resistance. While non-pharmacological interventions such as resistance training and blood flow restriction therapy remain the primary treatment strategies, their effectiveness is often limited in older adults with reduced muscle regenerative capacity. The identification of miRs as biomarkers could enhance early diagnosis and enable more personalized treatment approaches. However, further research is required to validate their clinical utility and therapeutic potential. This review comprehensively analyses the molecular mechanisms underlying sarcopenia, current diagnostic challenges, and emerging miR-based strategies that could transform its management. Future efforts should focus on integrating these molecular insights into clinical practice to improve early detection and intervention strategies.