A foundation model for learning genetic associations from brain imaging phenotypes.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-08-13 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf196
Diego Machado Reyes, Myson Burch, Laxmi Parida, Aritra Bose
{"title":"A foundation model for learning genetic associations from brain imaging phenotypes.","authors":"Diego Machado Reyes, Myson Burch, Laxmi Parida, Aritra Bose","doi":"10.1093/bioadv/vbaf196","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Due to the intricate etiology of neurological disorders, finding interpretable associations between multiomics features can be challenging using standard approaches.</p><p><strong>Results: </strong>We propose COMICAL, a contrastive learning approach using multiomics data to generate associations between genetic markers and brain imaging-derived phenotypes. COMICAL jointly learns omics representations utilizing transformer-based encoders with custom tokenizers. Our modality-agnostic approach uniquely identifies many-to-many associations via self-supervised learning schemes and cross-modal attention encoders. COMICAL discovered several significant associations between genetic markers and imaging-derived phenotypes for a variety of neurological disorders in the UK Biobank, as well as prediction of diseases and unseen clinical outcomes from learned representations.</p><p><strong>Availability and implementation: </strong>The source code of COMICAL along with pretrained weights, enabling transfer learning, is available at https://github.com/IBM/comical.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf196"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Due to the intricate etiology of neurological disorders, finding interpretable associations between multiomics features can be challenging using standard approaches.

Results: We propose COMICAL, a contrastive learning approach using multiomics data to generate associations between genetic markers and brain imaging-derived phenotypes. COMICAL jointly learns omics representations utilizing transformer-based encoders with custom tokenizers. Our modality-agnostic approach uniquely identifies many-to-many associations via self-supervised learning schemes and cross-modal attention encoders. COMICAL discovered several significant associations between genetic markers and imaging-derived phenotypes for a variety of neurological disorders in the UK Biobank, as well as prediction of diseases and unseen clinical outcomes from learned representations.

Availability and implementation: The source code of COMICAL along with pretrained weights, enabling transfer learning, is available at https://github.com/IBM/comical.

Abstract Image

Abstract Image

Abstract Image

从脑成像表型中学习遗传关联的基础模型。
动机:由于神经系统疾病的复杂病因学,使用标准方法寻找多组学特征之间可解释的关联可能具有挑战性。结果:我们提出COMICAL,一种使用多组学数据的对比学习方法,以产生遗传标记和脑成像衍生表型之间的关联。COMICAL利用基于转换器的编码器和自定义标记器共同学习组学表示。我们的模态不可知方法通过自监督学习方案和跨模态注意编码器唯一地识别多对多关联。COMICAL在英国生物银行发现了遗传标记和各种神经系统疾病的成像衍生表型之间的几个重要关联,以及从学习表征中预测疾病和看不见的临床结果。可用性和实现:COMICAL的源代码以及预训练的权重,支持迁移学习,可在https://github.com/IBM/comical获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信