Multimodal deep learning for predicting protein ubiquitination sites.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-08-20 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf200
Subash C Pakhrin, Moriah R Beck, Punjan Subedi, Rabina Lama, Simonsha Shrestha
{"title":"Multimodal deep learning for predicting protein ubiquitination sites.","authors":"Subash C Pakhrin, Moriah R Beck, Punjan Subedi, Rabina Lama, Simonsha Shrestha","doi":"10.1093/bioadv/vbaf200","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Ubiquitination is a crucial post-translational modification that regulates various biological functions, including protein degradation, signal transduction, and cellular homeostasis. Accurate identification of ubiquitination sites is essential for understanding these mechanisms, yet existing prediction tools often lack generalizability across diverse datasets. To address this limitation, we developed Multimodal Ubiquitination Predictor, a deep learning-based approach capable of predicting ubiquitination sites across general, human-specific, and plant-specific datasets. By integrating diverse protein sequence representations-one-hot encoding, embeddings, and physicochemical properties-within a unified deep-learning framework, the proposed method significantly enhances prediction accuracy and robustness, offering a valuable resource for both research and applications in ubiquitination site discovery.</p><p><strong>Results: </strong>Multimodal Ubiquitination Predictor achieved superior performance across general, human-specific, and plant-specific datasets, with 77.25% accuracy, 74.98% sensitivity, 80.67% specificity, an MCC of 0.54, and an AUC of 0.87 on an independent human ubiquitination test dataset. It outperformed existing methods, demonstrating enhanced reliability for ubiquitination site prediction. This robust predictor and dataset serve as valuable resources for future research and discovery.</p><p><strong>Availability and implementation: </strong>The developed tool, programs, training, and test dataset are available at https://github.com/PakhrinLab/MMUbiPred.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf200"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Ubiquitination is a crucial post-translational modification that regulates various biological functions, including protein degradation, signal transduction, and cellular homeostasis. Accurate identification of ubiquitination sites is essential for understanding these mechanisms, yet existing prediction tools often lack generalizability across diverse datasets. To address this limitation, we developed Multimodal Ubiquitination Predictor, a deep learning-based approach capable of predicting ubiquitination sites across general, human-specific, and plant-specific datasets. By integrating diverse protein sequence representations-one-hot encoding, embeddings, and physicochemical properties-within a unified deep-learning framework, the proposed method significantly enhances prediction accuracy and robustness, offering a valuable resource for both research and applications in ubiquitination site discovery.

Results: Multimodal Ubiquitination Predictor achieved superior performance across general, human-specific, and plant-specific datasets, with 77.25% accuracy, 74.98% sensitivity, 80.67% specificity, an MCC of 0.54, and an AUC of 0.87 on an independent human ubiquitination test dataset. It outperformed existing methods, demonstrating enhanced reliability for ubiquitination site prediction. This robust predictor and dataset serve as valuable resources for future research and discovery.

Availability and implementation: The developed tool, programs, training, and test dataset are available at https://github.com/PakhrinLab/MMUbiPred.

Abstract Image

Abstract Image

Abstract Image

多模态深度学习预测蛋白质泛素化位点。
动机:泛素化是一种重要的翻译后修饰,可调节多种生物功能,包括蛋白质降解、信号转导和细胞稳态。准确识别泛素化位点对于理解这些机制至关重要,然而现有的预测工具往往缺乏跨不同数据集的通用性。为了解决这一限制,我们开发了多模态泛素化预测器,这是一种基于深度学习的方法,能够预测通用、人类特异性和植物特异性数据集的泛素化位点。通过在一个统一的深度学习框架内整合多种蛋白质序列表示(one-hot编码、嵌入和物理化学性质),该方法显著提高了预测精度和鲁棒性,为泛素化位点发现的研究和应用提供了宝贵的资源。结果:Multimodal Ubiquitination Predictor在一般、人类特异性和植物特异性数据集上表现优异,准确率为77.25%,灵敏度为74.98%,特异性为80.67%,MCC为0.54,AUC为0.87。它优于现有的方法,证明了泛素化位点预测的可靠性。这个强大的预测器和数据集为未来的研究和发现提供了宝贵的资源。可用性和实现:开发的工具、程序、培训和测试数据集可在https://github.com/PakhrinLab/MMUbiPred上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信