A graph attention-based deep learning network for predicting biotech-small-molecule drug interactions.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-09-01 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf192
Fatemeh Nasiri, Mohsen Hooshmand
{"title":"A graph attention-based deep learning network for predicting biotech-small-molecule drug interactions.","authors":"Fatemeh Nasiri, Mohsen Hooshmand","doi":"10.1093/bioadv/vbaf192","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The increasing demand for effective drug combinations has made drug-drug interaction prediction a critical task in modern pharmacology. While most existing research focuses on small-molecule drugs, the role of biotech drugs in complex disease treatments remains relatively unexplored. Biotech drugs, derived from biological sources, have unique molecular structures that differ significantly from those of small molecules, making their interactions more challenging to predict.</p><p><strong>Results: </strong>This study introduces a novel graph attention network<b>-</b>based deep learning framework that improves interaction prediction between biotech and small-molecule drugs. Experimental results demonstrate that the proposed method outperforms existing methods in multiclass drug-drug interaction prediction, achieving superior performance across various evaluation types, including micro, macro, and weighted assessments. These findings highlight the potential of deep learning and graph-based models in uncovering novel interactions between biotech and small-molecule drugs, paving the way for more effective combination therapies in drug discovery.</p><p><strong>Availability and implementation: </strong>The datasets and source code of this study are available in the GitHub repository: https://github.com/BioinformaticsIASBS/BSI-Net.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf192"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The increasing demand for effective drug combinations has made drug-drug interaction prediction a critical task in modern pharmacology. While most existing research focuses on small-molecule drugs, the role of biotech drugs in complex disease treatments remains relatively unexplored. Biotech drugs, derived from biological sources, have unique molecular structures that differ significantly from those of small molecules, making their interactions more challenging to predict.

Results: This study introduces a novel graph attention network-based deep learning framework that improves interaction prediction between biotech and small-molecule drugs. Experimental results demonstrate that the proposed method outperforms existing methods in multiclass drug-drug interaction prediction, achieving superior performance across various evaluation types, including micro, macro, and weighted assessments. These findings highlight the potential of deep learning and graph-based models in uncovering novel interactions between biotech and small-molecule drugs, paving the way for more effective combination therapies in drug discovery.

Availability and implementation: The datasets and source code of this study are available in the GitHub repository: https://github.com/BioinformaticsIASBS/BSI-Net.

Abstract Image

Abstract Image

Abstract Image

用于预测生物技术-小分子药物相互作用的基于图注意力的深度学习网络。
动机:对有效药物组合的需求日益增加,使得药物相互作用预测成为现代药理学的一项重要任务。虽然大多数现有的研究都集中在小分子药物上,但生物技术药物在复杂疾病治疗中的作用仍然相对未被探索。生物技术药物源于生物来源,具有独特的分子结构,与小分子药物有很大不同,这使得它们的相互作用更难以预测。结果:本研究引入了一种新的基于图注意网络的深度学习框架,改进了生物技术与小分子药物之间的相互作用预测。实验结果表明,该方法在多类别药物-药物相互作用预测方面优于现有方法,在微观、宏观和加权评价等多种评价类型上均取得了优异的表现。这些发现突出了深度学习和基于图的模型在揭示生物技术和小分子药物之间的新相互作用方面的潜力,为药物发现中更有效的联合疗法铺平了道路。可用性和实现:本研究的数据集和源代码可在GitHub存储库中获得:https://github.com/BioinformaticsIASBS/BSI-Net。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信