MBC PathNet: integration and visualization of networks connecting functionally related pathways predicted from transcriptomic and proteomic datasets.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-08-18 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf197
Jens Hansen, Ravi Iyengar
{"title":"MBC PathNet: integration and visualization of networks connecting functionally related pathways predicted from transcriptomic and proteomic datasets.","authors":"Jens Hansen, Ravi Iyengar","doi":"10.1093/bioadv/vbaf197","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Advances in high-throughput technologies have shifted the focus from bulk to single cell or spatial transcriptomic and proteomic analysis of tissues and cell cultures. The resulting increase in gene and/or protein lists leads to the subsequent growth of up- and downregulated pathways lists. This trend creates the need for pathway-network based integration strategies that allow quick exploration of shared and distinct mechanisms across datasets.</p><p><strong>Results: </strong>Here, we present Molecular Biology of the Cell (MBC) Pathway Networks (PathNet). MBC PathNet allows for quick and easy integration and visualization of networks of functionally related pathways predicted from gene and protein lists using the Molecular Biology of the Cell Ontology and other ontologies. Within networks of hierarchical parent-child relationships or functional relationships, pathways are visualized as pie charts where each slice represents a dataset that predicted that pathway. Sizes of pies and slices can be selected to represent statistical significance or other quantitative measures. In addition, MBC PathNet can generate bar diagrams, heatmaps, and timelines. Fully automated execution from the command line is supported.</p><p><strong>Availability and implementation: </strong>iyengarlab.org/mbcpathnet; mbc-ontology.org; github.com/SBCNY/Molecular-Biology-of-the-Cell.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf197"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Advances in high-throughput technologies have shifted the focus from bulk to single cell or spatial transcriptomic and proteomic analysis of tissues and cell cultures. The resulting increase in gene and/or protein lists leads to the subsequent growth of up- and downregulated pathways lists. This trend creates the need for pathway-network based integration strategies that allow quick exploration of shared and distinct mechanisms across datasets.

Results: Here, we present Molecular Biology of the Cell (MBC) Pathway Networks (PathNet). MBC PathNet allows for quick and easy integration and visualization of networks of functionally related pathways predicted from gene and protein lists using the Molecular Biology of the Cell Ontology and other ontologies. Within networks of hierarchical parent-child relationships or functional relationships, pathways are visualized as pie charts where each slice represents a dataset that predicted that pathway. Sizes of pies and slices can be selected to represent statistical significance or other quantitative measures. In addition, MBC PathNet can generate bar diagrams, heatmaps, and timelines. Fully automated execution from the command line is supported.

Availability and implementation: iyengarlab.org/mbcpathnet; mbc-ontology.org; github.com/SBCNY/Molecular-Biology-of-the-Cell.

Abstract Image

MBC PathNet:整合和可视化从转录组学和蛋白质组学数据集预测的连接功能相关通路的网络。
动机:高通量技术的进步已经将重点从批量转移到单细胞或组织和细胞培养的空间转录组学和蛋白质组学分析。由此产生的基因和/或蛋白质列表的增加导致随后的上调和下调通路列表的增长。这种趋势创造了对基于路径网络的集成策略的需求,这种策略允许跨数据集快速探索共享和独特的机制。结果:在这里,我们提出了细胞分子生物学(MBC)通路网络(PathNet)。MBC PathNet允许使用细胞本体论和其他本体论的分子生物学从基因和蛋白质列表中预测功能相关通路的网络快速简便地集成和可视化。在层次父子关系或功能关系的网络中,路径被可视化为饼状图,其中每个切片代表预测该路径的数据集。可以选择饼和片的大小来表示统计显著性或其他定量度量。此外,MBC PathNet还可以生成条形图、热图和时间线。支持从命令行完全自动化执行。可用性和实施:iyengarlab.org/mbcpathnet;mbc-ontology.org;github.com/SBCNY/Molecular-Biology-of-the-Cell。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信