GViNC: an innovative framework for genome graph comparison reveals hidden patterns in the genetic diversity of human populations.

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-09-03 eCollection Date: 2025-09-01 DOI:10.1093/nargab/lqaf121
Venkatesh Kamaraj, Ayam Gupta, Karthik Raman, Manikandan Narayanan, Himanshu Sinha
{"title":"GViNC: an innovative framework for genome graph comparison reveals hidden patterns in the genetic diversity of human populations.","authors":"Venkatesh Kamaraj, Ayam Gupta, Karthik Raman, Manikandan Narayanan, Himanshu Sinha","doi":"10.1093/nargab/lqaf121","DOIUrl":null,"url":null,"abstract":"<p><p>Genome graphs provide a powerful reference structure for representing genetic diversity. Their structure emphasizes the polymorphic regions in a collection of genomes, enabling network-based comparisons of population-level variation. However, current tools are limited in their ability to quantify and compare structural features across large genome graphs. We introduce GViNC, Genome graph Visualization, Navigation, and Comparison, a novel framework that enables partitioning genome graphs into interpretable subgraphs, mapping linear coordinates to graph nodes, and summarizing both local and global structural variation using new metrics for variability, hypervariability, and graph distances. We applied GViNC to multiple pan-genomic and population-specific genome graphs constructed with over 85M variants in 2504 individuals from the 1000 Genomes Project. We found that genomic complexity varied by ancestry and across chromosomes, with rare variants increasing variability by 10-fold and hypervariability by 50-fold. GViNC highlighted key regions of the human genome, such as Human Leukocyte Antigen and DEFB loci, and many previously unreported high-diversity regions, some with population-specific signatures in protein-coding and regulatory genes. By bridging sequence-level variation and graph-level topology, GViNC enables scalable, quantitative exploration of genome structure across populations. GViNC's versatility can aid researchers in extensively investigating the genetic diversity of different cohorts, populations, or species of interest.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 3","pages":"lqaf121"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome graphs provide a powerful reference structure for representing genetic diversity. Their structure emphasizes the polymorphic regions in a collection of genomes, enabling network-based comparisons of population-level variation. However, current tools are limited in their ability to quantify and compare structural features across large genome graphs. We introduce GViNC, Genome graph Visualization, Navigation, and Comparison, a novel framework that enables partitioning genome graphs into interpretable subgraphs, mapping linear coordinates to graph nodes, and summarizing both local and global structural variation using new metrics for variability, hypervariability, and graph distances. We applied GViNC to multiple pan-genomic and population-specific genome graphs constructed with over 85M variants in 2504 individuals from the 1000 Genomes Project. We found that genomic complexity varied by ancestry and across chromosomes, with rare variants increasing variability by 10-fold and hypervariability by 50-fold. GViNC highlighted key regions of the human genome, such as Human Leukocyte Antigen and DEFB loci, and many previously unreported high-diversity regions, some with population-specific signatures in protein-coding and regulatory genes. By bridging sequence-level variation and graph-level topology, GViNC enables scalable, quantitative exploration of genome structure across populations. GViNC's versatility can aid researchers in extensively investigating the genetic diversity of different cohorts, populations, or species of interest.

Abstract Image

Abstract Image

Abstract Image

GViNC:基因组图谱比较的创新框架,揭示了人类种群遗传多样性的隐藏模式。
基因组图谱为表达遗传多样性提供了强有力的参考结构。它们的结构强调基因组集合中的多态性区域,使基于网络的种群水平变异比较成为可能。然而,目前的工具在量化和比较大型基因组图的结构特征方面的能力有限。我们介绍了GViNC,基因组图可视化,导航和比较,这是一个新的框架,可以将基因组图划分为可解释的子图,将线性坐标映射到图节点,并使用变异性,超变异性和图距离的新度量来总结局部和全局结构变化。我们将GViNC应用于多个泛基因组和群体特异性基因组图,这些基因组图由来自1000基因组计划的2504个个体的超过8500万个变体构建而成。我们发现基因组复杂性因祖先和染色体而异,罕见变异使变异性增加10倍,高变异性增加50倍。GViNC强调了人类基因组的关键区域,如人类白细胞抗原和DEFB位点,以及许多以前未报道的高多样性区域,其中一些在蛋白质编码和调控基因中具有群体特异性特征。通过桥接序列级变异和图级拓扑结构,GViNC能够跨种群进行可扩展的、定量的基因组结构探索。GViNC的多功能性可以帮助研究人员广泛调查不同群体、种群或感兴趣物种的遗传多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信