Benchmarking the operation of quantum heuristics and Ising machines: scoring parameter setting strategies on optimization applications.

IF 4.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Quantum Machine Intelligence Pub Date : 2025-01-01 Epub Date: 2025-09-05 DOI:10.1007/s42484-025-00311-2
David E Bernal Neira, Robin Brown, Pratik Sathe, Filip Wudarski, Marco Pavone, Eleanor Rieffel, Davide Venturelli
{"title":"Benchmarking the operation of quantum heuristics and Ising machines: scoring parameter setting strategies on optimization applications.","authors":"David E Bernal Neira, Robin Brown, Pratik Sathe, Filip Wudarski, Marco Pavone, Eleanor Rieffel, Davide Venturelli","doi":"10.1007/s42484-025-00311-2","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss guidelines for evaluating the performance of parameterized stochastic solvers for optimization problems, with particular attention to systems that employ novel hardware, such as digital quantum processors running variational algorithms, analog processors performing quantum annealing, or coherent Ising machines. We illustrate through an example a benchmarking procedure grounded in the statistical analysis of the expectation of a given performance metric measured in a test environment. In particular, we discuss the necessity and cost of setting parameters that affect the algorithm's performance. The optimal value of these parameters could vary significantly between instances of the same target problem. We present an open-source software package that facilitates the design, evaluation, and visualization of practical parameter tuning strategies for the complex use of the heterogeneous components of the solver. We examine in detail an example using parallel tempering and a simulator of a photonic coherent Ising machine computing and display the scoring of an illustrative baseline family of parameter setting strategies that feature an exploration-exploitation trade-off.</p>","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"7 2","pages":"86"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Machine Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42484-025-00311-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss guidelines for evaluating the performance of parameterized stochastic solvers for optimization problems, with particular attention to systems that employ novel hardware, such as digital quantum processors running variational algorithms, analog processors performing quantum annealing, or coherent Ising machines. We illustrate through an example a benchmarking procedure grounded in the statistical analysis of the expectation of a given performance metric measured in a test environment. In particular, we discuss the necessity and cost of setting parameters that affect the algorithm's performance. The optimal value of these parameters could vary significantly between instances of the same target problem. We present an open-source software package that facilitates the design, evaluation, and visualization of practical parameter tuning strategies for the complex use of the heterogeneous components of the solver. We examine in detail an example using parallel tempering and a simulator of a photonic coherent Ising machine computing and display the scoring of an illustrative baseline family of parameter setting strategies that feature an exploration-exploitation trade-off.

Abstract Image

Abstract Image

Abstract Image

对量子启发式和伊辛机器的操作进行基准测试:对优化应用的参数设置策略进行评分。
我们讨论了评估优化问题的参数化随机求解器性能的指导方针,特别关注采用新型硬件的系统,例如运行变分算法的数字量子处理器,执行量子退火的模拟处理器或相干伊辛机。我们通过一个示例来说明一个基准测试过程,该过程基于对测试环境中测量的给定性能度量的期望的统计分析。特别地,我们讨论了设置影响算法性能的参数的必要性和代价。这些参数的最优值在相同目标问题的实例之间可能会有很大差异。我们提出了一个开源软件包,促进了求解器异构组件复杂使用的实际参数调优策略的设计、评估和可视化。我们详细研究了一个使用并行回火和光子相干伊辛机计算模拟器的例子,并显示了一个说明性基线系列参数设置策略的评分,该策略以探索-开发权衡为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
4.20%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信