Integrating multiple microRNA functional similarity networks for improved disease-microRNA association prediction.

IF 1.3 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2025-09-02 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpaf065
Duc-Hau Le
{"title":"Integrating multiple microRNA functional similarity networks for improved disease-microRNA association prediction.","authors":"Duc-Hau Le","doi":"10.1093/biomethods/bpaf065","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) play a critical role in disease mechanisms, making the identification of disease-associated miRNAs essential for precision medicine. We propose a novel computational method, multiplex-heterogeneous network for MiRNA-disease associations (MHMDA), which integrates multiple miRNA functional similarity networks and a disease similarity network into a multiplex-heterogeneous network. This approach employs a tailored random walk with restart algorithm to predict disease-miRNA associations, leveraging the complementary information from experimentally validated and predicted miRNA-target interactions, as well as disease phenotypic similarities. Evaluated on the human microRNA disease database and miR2Disease datasets using leave-one-out cross-validation and 5-fold cross-validation, MHMDA demonstrates superior performance, achieving area under the receiver operating characteristic curve values of 0.938 and 0.913 on human microRNA disease database and miR2Disease, respectively, and outperforming existing methods. The integration of multiplex networks enhances prediction accuracy by capturing diverse miRNA functional relationships, which directly contributes to the high area under the receiver operating characteristic curve and area under the precision-recall curve values observed. Additionally, MHMDA's stability across parameter variations and disease contexts underscores its robustness and potential for real-world applications in identifying novel disease-miRNA associations.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpaf065"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpaf065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRNAs) play a critical role in disease mechanisms, making the identification of disease-associated miRNAs essential for precision medicine. We propose a novel computational method, multiplex-heterogeneous network for MiRNA-disease associations (MHMDA), which integrates multiple miRNA functional similarity networks and a disease similarity network into a multiplex-heterogeneous network. This approach employs a tailored random walk with restart algorithm to predict disease-miRNA associations, leveraging the complementary information from experimentally validated and predicted miRNA-target interactions, as well as disease phenotypic similarities. Evaluated on the human microRNA disease database and miR2Disease datasets using leave-one-out cross-validation and 5-fold cross-validation, MHMDA demonstrates superior performance, achieving area under the receiver operating characteristic curve values of 0.938 and 0.913 on human microRNA disease database and miR2Disease, respectively, and outperforming existing methods. The integration of multiplex networks enhances prediction accuracy by capturing diverse miRNA functional relationships, which directly contributes to the high area under the receiver operating characteristic curve and area under the precision-recall curve values observed. Additionally, MHMDA's stability across parameter variations and disease contexts underscores its robustness and potential for real-world applications in identifying novel disease-miRNA associations.

Abstract Image

Abstract Image

Abstract Image

整合多个microRNA功能相似网络,改进疾病-microRNA关联预测。
MicroRNAs (miRNAs)在疾病机制中起着至关重要的作用,因此鉴定疾病相关的miRNAs对于精准医学至关重要。我们提出了一种新的计算方法,即miRNA -疾病关联的多重异质网络(MHMDA),该方法将多个miRNA功能相似网络和疾病相似网络整合为一个多重异质网络。该方法采用定制的随机漫步和重启算法来预测疾病- mirna关联,利用来自实验验证和预测的mirna -靶标相互作用的互补信息,以及疾病表型相似性。在人类microRNA疾病数据库和miR2Disease数据集上进行留一交叉验证和5倍交叉验证,MHMDA表现出优越的性能,在人类microRNA疾病数据库和miR2Disease数据集上的受试者工作特征曲线下面积分别为0.938和0.913,优于现有方法。多路网络的集成通过捕获不同的miRNA功能关系来提高预测精度,这直接导致了观察到的接收器工作特征曲线下的高面积和精确召回率曲线下的面积。此外,MHMDA在参数变化和疾病背景下的稳定性强调了其在识别新型疾病- mirna关联方面的稳健性和现实应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信