Metabolic biochemical models of N2 fixation for sulfide oxidizers, methanogens, and methanotrophs.

IF 4.6 2区 生物学 Q1 MICROBIOLOGY
mSystems Pub Date : 2025-09-08 DOI:10.1128/msystems.00748-25
Meng Gao, Megan E Berberich, Reid Brown, David M Costello, James B Cotner, Julian Damashek, Leila Richards Kittu, Ada Pastor, Robinson W Fulweiler, J Thad Scott, Amy M Marcarelli, Keisuke Inomura
{"title":"Metabolic biochemical models of N<sub>2</sub> fixation for sulfide oxidizers, methanogens, and methanotrophs.","authors":"Meng Gao, Megan E Berberich, Reid Brown, David M Costello, James B Cotner, Julian Damashek, Leila Richards Kittu, Ada Pastor, Robinson W Fulweiler, J Thad Scott, Amy M Marcarelli, Keisuke Inomura","doi":"10.1128/msystems.00748-25","DOIUrl":null,"url":null,"abstract":"<p><p>Dinitrogen (N<sub>2</sub>) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g., sediments), the metabolic pathways of organisms carrying out N<sub>2</sub> fixation are unclear. We present metabolic models representing various chemotrophic N<sub>2</sub> fixers, which simulate potential pathways of electron transport and energy flow, resulting in predictions of whole-cell stoichiometries. By balancing mass, electrons, and energy for metabolic half-reactions, we quantify the electron usage for nine N<sub>2</sub> fixers. Our results demonstrate that all modeled organisms fix sufficient N<sub>2</sub> for growth. Aerobic organisms allocate more electrons to N<sub>2</sub> fixation and growth, yielding more biomass and fixing more N<sub>2</sub>, while methanogens using acetate and organisms using sulfate allocate fewer electrons. This work can be applied to investigate the depth distribution of N<sub>2</sub> fixers based on nutrient availability, complementing field measurements of biogeochemical processes and microbial communities.IMPORTANCEN<sub>2</sub> fixation is an important process in the global N cycle. Researchers have developed models for heterotrophic and photoautotrophic N<sub>2</sub> fixers, but there is a lack of modeling studies on chemoautotrophic N<sub>2</sub> fixers. Here, we built nine biochemical models for different chemoautotrophic N<sub>2</sub> fixers by combining different types of half-chemical reactions. We include three sulfide oxidizers using different electron acceptors (O<sub>2</sub>, NO<sub>3</sub><sup>-</sup>, and Fe<sup>3+</sup>), contributing to the sulfur, nitrogen, and iron cycles in the sediment. We have two methanogens using different substrates (H<sub>2</sub> and acetate) and four methanotrophs using different electron acceptors (O<sub>2</sub>, NO<sub>3</sub><sup>-</sup>, Fe<sup>3+</sup>, and SO<sub>4</sub><sup>2-</sup>). By modeling these methane producers and users in the sediment and their N<sub>2</sub>-fixing metabolic pathways, our work can provide insight for future carbon cycle studies. This study outlines various metabolic pathways that can facilitate N<sub>2</sub> fixation, with implications for where in the environment they might occur.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0074825"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00748-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dinitrogen (N2) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g., sediments), the metabolic pathways of organisms carrying out N2 fixation are unclear. We present metabolic models representing various chemotrophic N2 fixers, which simulate potential pathways of electron transport and energy flow, resulting in predictions of whole-cell stoichiometries. By balancing mass, electrons, and energy for metabolic half-reactions, we quantify the electron usage for nine N2 fixers. Our results demonstrate that all modeled organisms fix sufficient N2 for growth. Aerobic organisms allocate more electrons to N2 fixation and growth, yielding more biomass and fixing more N2, while methanogens using acetate and organisms using sulfate allocate fewer electrons. This work can be applied to investigate the depth distribution of N2 fixers based on nutrient availability, complementing field measurements of biogeochemical processes and microbial communities.IMPORTANCEN2 fixation is an important process in the global N cycle. Researchers have developed models for heterotrophic and photoautotrophic N2 fixers, but there is a lack of modeling studies on chemoautotrophic N2 fixers. Here, we built nine biochemical models for different chemoautotrophic N2 fixers by combining different types of half-chemical reactions. We include three sulfide oxidizers using different electron acceptors (O2, NO3-, and Fe3+), contributing to the sulfur, nitrogen, and iron cycles in the sediment. We have two methanogens using different substrates (H2 and acetate) and four methanotrophs using different electron acceptors (O2, NO3-, Fe3+, and SO42-). By modeling these methane producers and users in the sediment and their N2-fixing metabolic pathways, our work can provide insight for future carbon cycle studies. This study outlines various metabolic pathways that can facilitate N2 fixation, with implications for where in the environment they might occur.

硫化物氧化剂、产甲烷菌和甲烷氧化菌固氮的代谢生化模型。
二氮(N2)固定为生物圈提供生物可利用的氮。然而,在某些栖息地(如沉积物)中,进行N2固定的生物的代谢途径尚不清楚。我们提出了代表各种化学营养N2固定物的代谢模型,模拟了电子传递和能量流动的潜在途径,从而预测了全细胞化学计量学。通过平衡代谢半反应的质量、电子和能量,我们量化了9种N2固定物的电子使用。我们的研究结果表明,所有的模拟生物都能固定足够的N2来生长。好氧生物将更多的电子分配给N2固定和生长,产生更多的生物量并固定更多的N2,而使用醋酸盐的产甲烷菌和使用硫酸盐的生物分配的电子较少。这项工作可以应用于基于养分有效性的N2固定物深度分布研究,补充了生物地球化学过程和微生物群落的现场测量。固结是全球氮循环的一个重要过程。研究人员已经建立了异养和光自养固氮生物的模型,但缺乏化学自养固氮生物的模型研究。本研究通过结合不同类型的半化学反应,建立了不同化学自养型N2固定物的9种生化模型。我们包括三种硫化物氧化剂使用不同的电子受体(O2, NO3-和Fe3+),有助于沉积物中的硫,氮和铁循环。我们有两个产甲烷菌使用不同的底物(H2和乙酸酯)和四个产甲烷菌使用不同的电子受体(O2, NO3-, Fe3+和SO42-)。通过对沉积物中这些甲烷产生者和使用者及其固定n2的代谢途径进行建模,我们的工作可以为未来的碳循环研究提供见解。本研究概述了促进N2固定的各种代谢途径,并暗示了它们在环境中可能发生的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信