GlSlt2 positively regulates GlMyb-mediated cellulose utilization in Ganoderma lucidum.

IF 4.7 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-10-08 Epub Date: 2025-09-08 DOI:10.1128/mbio.01812-25
Zi Wang, Yefan Li, Hao Qiu, Zhouyu Li, Tianyu Ji, Ang Ren, Jing Zhu, Liang Shi, Mingwen Zhao, Rui Liu
{"title":"<i>Gl</i>Slt2 positively regulates <i>Gl</i>Myb-mediated cellulose utilization in <i>Ganoderma lucidum</i>.","authors":"Zi Wang, Yefan Li, Hao Qiu, Zhouyu Li, Tianyu Ji, Ang Ren, Jing Zhu, Liang Shi, Mingwen Zhao, Rui Liu","doi":"10.1128/mbio.01812-25","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. <i>Ganoderma lucidum</i> is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of <i>G. lucidum</i> degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development. The efficiency with which <i>G. lucidum</i> utilizes cellulose is a determinant of its growth rate. In this study, our findings revealed that the mitogen-activated protein kinase <i>Gl</i>Slt2 positively modulates cellulase activity and cellulose utilization. Furthermore, a yeast two-hybrid (Y2H) screening library found that <i>Gl</i>Slt2 interacts with <i>Gl</i>Myb, an R2R3-type MYB transcription factor. Further studies revealed that <i>Gl</i>Slt2 phosphorylates the S245 site of <i>Gl</i>Myb and that <i>Gl</i>Myb positively regulates cellulose utilization. <i>Gl</i>Myb directly binds to the [A/G] TTAC [G/C] [C/G] motif on the promoters of cellulase-related genes. The S245 site of <i>Gl</i>Myb promotes the binding of <i>Gl</i>Myb to the promoters of cellulase-related genes. Collectively, our findings highlight the mechanism by which <i>Gl</i>Slt2 positively regulates <i>Gl</i>Myb-mediated cellulose utilization. Enhancing cellulose utilization efficiency lays the foundation for the degradation of cellulose in agricultural and forestry waste and facilitates biomass conversion.</p><p><strong>Importance: </strong>The proficient exploitation of cellulose is pivotal for fostering sustainable development, safeguarding the environment, and advancing economic prosperity and technological innovation. Paramount among these benefits is the reduction of reliance on fossil fuels. <i>Ganoderma lucidum</i>, a filamentous fungus, could effectively utilize cellulose from agricultural and forestry waste. Nevertheless, enhancing the efficiency of cellulose utilization from these by-products presents a formidable challenge that demands resolution. In our study, we discovered that GlSlt2 interacts with GlMyb and phosphorylates the S245 site of GlMyb. Further studies have revealed that GlSlt2 positively regulates GlMyb-mediated cellulose utilization. In summary, our findings unveil a sophisticated regulatory mechanism controlling cellulose utilization. These insights lay the foundation for biomass conversion and the biosphere carbon cycle.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0181225"},"PeriodicalIF":4.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.01812-25","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. Ganoderma lucidum is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of G. lucidum degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development. The efficiency with which G. lucidum utilizes cellulose is a determinant of its growth rate. In this study, our findings revealed that the mitogen-activated protein kinase GlSlt2 positively modulates cellulase activity and cellulose utilization. Furthermore, a yeast two-hybrid (Y2H) screening library found that GlSlt2 interacts with GlMyb, an R2R3-type MYB transcription factor. Further studies revealed that GlSlt2 phosphorylates the S245 site of GlMyb and that GlMyb positively regulates cellulose utilization. GlMyb directly binds to the [A/G] TTAC [G/C] [C/G] motif on the promoters of cellulase-related genes. The S245 site of GlMyb promotes the binding of GlMyb to the promoters of cellulase-related genes. Collectively, our findings highlight the mechanism by which GlSlt2 positively regulates GlMyb-mediated cellulose utilization. Enhancing cellulose utilization efficiency lays the foundation for the degradation of cellulose in agricultural and forestry waste and facilitates biomass conversion.

Importance: The proficient exploitation of cellulose is pivotal for fostering sustainable development, safeguarding the environment, and advancing economic prosperity and technological innovation. Paramount among these benefits is the reduction of reliance on fossil fuels. Ganoderma lucidum, a filamentous fungus, could effectively utilize cellulose from agricultural and forestry waste. Nevertheless, enhancing the efficiency of cellulose utilization from these by-products presents a formidable challenge that demands resolution. In our study, we discovered that GlSlt2 interacts with GlMyb and phosphorylates the S245 site of GlMyb. Further studies have revealed that GlSlt2 positively regulates GlMyb-mediated cellulose utilization. In summary, our findings unveil a sophisticated regulatory mechanism controlling cellulose utilization. These insights lay the foundation for biomass conversion and the biosphere carbon cycle.

GlSlt2正调控glmyb介导的灵芝纤维素利用。
真菌对纤维素的降解促进了生物圈能量的可持续利用和碳循环。灵芝是基因组中水解酶数量最多的担子菌之一。G. lucidum的菌丝通过产生大量纤维素酶来降解纤维素,从而吸收子实体发育所必需的碳源和营养物质。灵芝利用纤维素的效率是其生长速度的决定因素。在这项研究中,我们的研究结果揭示了丝裂原活化蛋白激酶GlSlt2正调节纤维素酶活性和纤维素利用。此外,酵母双杂交(Y2H)筛选文库发现GlSlt2与r2r3型MYB转录因子GlMyb相互作用。进一步研究发现GlSlt2磷酸化GlMyb的S245位点,GlMyb正调控纤维素利用。GlMyb直接结合纤维素酶相关基因启动子上的[A/G] TTAC [G/C] [C/G]基序。GlMyb的S245位点促进GlMyb与纤维素酶相关基因启动子的结合。总的来说,我们的发现强调了GlSlt2积极调节glmyb介导的纤维素利用的机制。提高纤维素利用效率,为农林废弃物中纤维素的降解奠定基础,促进生物质转化。重要性:纤维素的有效利用对促进可持续发展、保护环境、促进经济繁荣和技术创新至关重要。在这些好处中,最重要的是减少对化石燃料的依赖。灵芝是一种丝状真菌,能有效利用农林废弃物中的纤维素。然而,提高这些副产品的纤维素利用效率提出了一个需要解决的艰巨挑战。在我们的研究中,我们发现GlSlt2与GlMyb相互作用并磷酸化GlMyb的S245位点。进一步研究发现GlSlt2正调控glmyb介导的纤维素利用。总之,我们的发现揭示了控制纤维素利用的复杂调控机制。这些见解为生物质转化和生物圈碳循环奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信