Multimodal perception-driven decision-making for human-robot interaction: a survey.

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-08-22 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1604472
Wenzheng Zhao, Kruthika Gangaraju, Fengpei Yuan
{"title":"Multimodal perception-driven decision-making for human-robot interaction: a survey.","authors":"Wenzheng Zhao, Kruthika Gangaraju, Fengpei Yuan","doi":"10.3389/frobt.2025.1604472","DOIUrl":null,"url":null,"abstract":"<p><p>Multimodal perception is essential for enabling robots to understand and interact with complex environments and human users by integrating diverse sensory data, such as vision, language, and tactile information. This capability plays a crucial role in decision-making in dynamic, complex environments. This survey provides a comprehensive review of advancements in multimodal perception and its integration with decision-making in robotics from year 2004-2024. We systematically summarize existing multimodal perception-driven decision-making (MPDDM) frameworks, highlighting their advantages in dynamic environments and the methodologies employed in human-robot interaction (HRI). Beyond reviewing these frameworks, we analyze key challenges in multimodal perception and decision-making, focusing on technical integration and sensor noise, adaptation, domain generalization, and safety and robustness. Finally, we outline future research directions, emphasizing the need for adaptive multimodal fusion techniques, more efficient learning paradigms, and human-trusted decision-making frameworks to advance the HRI field.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1604472"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1604472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal perception is essential for enabling robots to understand and interact with complex environments and human users by integrating diverse sensory data, such as vision, language, and tactile information. This capability plays a crucial role in decision-making in dynamic, complex environments. This survey provides a comprehensive review of advancements in multimodal perception and its integration with decision-making in robotics from year 2004-2024. We systematically summarize existing multimodal perception-driven decision-making (MPDDM) frameworks, highlighting their advantages in dynamic environments and the methodologies employed in human-robot interaction (HRI). Beyond reviewing these frameworks, we analyze key challenges in multimodal perception and decision-making, focusing on technical integration and sensor noise, adaptation, domain generalization, and safety and robustness. Finally, we outline future research directions, emphasizing the need for adaptive multimodal fusion techniques, more efficient learning paradigms, and human-trusted decision-making frameworks to advance the HRI field.

Abstract Image

Abstract Image

人机交互中的多模态感知驱动决策研究。
通过整合视觉、语言和触觉信息等多种感官数据,多模态感知对于使机器人能够理解复杂环境和人类用户并与之交互至关重要。这种能力在动态、复杂环境中的决策中起着至关重要的作用。本调查提供了2004-2024年机器人多模态感知及其与决策集成的进展的全面回顾。我们系统地总结了现有的多模态感知驱动决策(MPDDM)框架,强调了它们在动态环境中的优势以及在人机交互(HRI)中使用的方法。除了回顾这些框架之外,我们还分析了多模态感知和决策中的关键挑战,重点关注技术集成和传感器噪声、自适应、领域泛化以及安全性和鲁棒性。最后,我们概述了未来的研究方向,强调需要自适应多模态融合技术、更有效的学习范式和人类信任的决策框架来推动HRI领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信