Antibacterial and anticancer activity of multifunctional iron-based magnetic nanoparticles against urinary tract infection and cystitis-related bacterial strains and bladder cancer cells.
{"title":"Antibacterial and anticancer activity of multifunctional iron-based magnetic nanoparticles against urinary tract infection and cystitis-related bacterial strains and bladder cancer cells.","authors":"Ki Chang Nam, Bong Joo Park","doi":"10.1007/s13534-025-00489-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study investigates the antibacterial and anticancer activity of previously reported iron oxide (Fe<sub>3</sub>O<sub>4</sub>)-based nanoparticles (NPs) conjugated with chlorin e6 and folic acid (FCF) in photodynamic therapy (PDT) using a human bladder cancer (BC) (T-24) cell line and three bacterial strains.</p><p><strong>Method: </strong>To investigate the potential applicability of the synthesized NPs as therapeutic agents for image-based photodynamic BC therapy, their photodynamic anticancer activity was analyzed and the mechanisms of cell death in T-24 cells treated with these NPs were assessed qualitatively and quantitatively through atomic absorption spectroscopy, fluorescence imaging, and transmission electron microscopy.</p><p><strong>Results: </strong>The effective localization of FCF NPs in T-24 cells were confirmed, validating their excellent cellular fluorescence and magnetic resonance imaging capabilities. Moreover, the FCF NPs exhibited excellent anticancer activity via distinct mechanisms of cell death; they induced apoptotic cancer cell death by strongly upregulating apoptosis-related mRNA genes, such as Bcl-2-interacting killer, growth arrest DNA damage-inducible protein 45 beta, and Caspase-3, -6, and -9. Furthermore, the FCF NPs showed significant antibacterial activity against <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, and the clinically isolated methicillin-resistant strain <i>Staphylococcus aureus</i>.</p><p><strong>Conclusion: </strong>FCF NPs effectively induce cancer cell death, show excellent photodynamic anticancer efficacy against BC cells, and exhibit potent antibacterial activity against uropathogenic bacterial strains via PDT, exhibiting high potential for application in versatile imaging-based diagnostics and therapeutics in BC treatment and urinary tract infection management. However, prior to their clinical application, in vivo studies using animal models are required to validate these biological and physiological effects.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 5","pages":"903-915"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-025-00489-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study investigates the antibacterial and anticancer activity of previously reported iron oxide (Fe3O4)-based nanoparticles (NPs) conjugated with chlorin e6 and folic acid (FCF) in photodynamic therapy (PDT) using a human bladder cancer (BC) (T-24) cell line and three bacterial strains.
Method: To investigate the potential applicability of the synthesized NPs as therapeutic agents for image-based photodynamic BC therapy, their photodynamic anticancer activity was analyzed and the mechanisms of cell death in T-24 cells treated with these NPs were assessed qualitatively and quantitatively through atomic absorption spectroscopy, fluorescence imaging, and transmission electron microscopy.
Results: The effective localization of FCF NPs in T-24 cells were confirmed, validating their excellent cellular fluorescence and magnetic resonance imaging capabilities. Moreover, the FCF NPs exhibited excellent anticancer activity via distinct mechanisms of cell death; they induced apoptotic cancer cell death by strongly upregulating apoptosis-related mRNA genes, such as Bcl-2-interacting killer, growth arrest DNA damage-inducible protein 45 beta, and Caspase-3, -6, and -9. Furthermore, the FCF NPs showed significant antibacterial activity against Escherichia coli, Staphylococcus aureus, and the clinically isolated methicillin-resistant strain Staphylococcus aureus.
Conclusion: FCF NPs effectively induce cancer cell death, show excellent photodynamic anticancer efficacy against BC cells, and exhibit potent antibacterial activity against uropathogenic bacterial strains via PDT, exhibiting high potential for application in versatile imaging-based diagnostics and therapeutics in BC treatment and urinary tract infection management. However, prior to their clinical application, in vivo studies using animal models are required to validate these biological and physiological effects.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.