Marker Gene-Guided Graph Neural Networks for Enhanced Spatial Transcriptomics Clustering.

AI medicine Pub Date : 2025-01-01 Epub Date: 2025-02-07 DOI:10.53941/aim.2025.100001
Haoran Liu, Xiang Lin, Zhi Wei
{"title":"Marker Gene-Guided Graph Neural Networks for Enhanced Spatial Transcriptomics Clustering.","authors":"Haoran Liu, Xiang Lin, Zhi Wei","doi":"10.53941/aim.2025.100001","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in Spatial Transcriptomics (ST) technologies have enabled researchers to investigate the relationships between cells while simultaneously considering their spatial locations within tissue. These technologies facilitate the integration of gene expression data with spatial information for clustering analysis. While many clustering methods have been developed, they typically rely on the dataset's intrinsic features without incorporating domain knowledge, such as marker genes. We argue that incorporating marker gene information can enhance the learning of cell embedding and improve clustering outcomes. In this paper, we introduce MGGNN (Marker Gene-Guided Graph Neural Networks), a novel approach designed to enhance spatial transcriptomics clustering. Firstly, we train the model using a contrastive learning framework based on a Graph Neural Network (GNN). Subsequently, we fine-tune the model using a few spots labeled by the expression of marker genes. Simulation and experiments conducted on two real-world datasets demonstrate the superior performance of our model over state-of-the-art methods.</p>","PeriodicalId":521032,"journal":{"name":"AI medicine","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53941/aim.2025.100001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in Spatial Transcriptomics (ST) technologies have enabled researchers to investigate the relationships between cells while simultaneously considering their spatial locations within tissue. These technologies facilitate the integration of gene expression data with spatial information for clustering analysis. While many clustering methods have been developed, they typically rely on the dataset's intrinsic features without incorporating domain knowledge, such as marker genes. We argue that incorporating marker gene information can enhance the learning of cell embedding and improve clustering outcomes. In this paper, we introduce MGGNN (Marker Gene-Guided Graph Neural Networks), a novel approach designed to enhance spatial transcriptomics clustering. Firstly, we train the model using a contrastive learning framework based on a Graph Neural Network (GNN). Subsequently, we fine-tune the model using a few spots labeled by the expression of marker genes. Simulation and experiments conducted on two real-world datasets demonstrate the superior performance of our model over state-of-the-art methods.

Abstract Image

Abstract Image

Abstract Image

增强空间转录组聚类的标记基因引导图神经网络。
空间转录组学(ST)技术的最新进展使研究人员能够研究细胞之间的关系,同时考虑它们在组织中的空间位置。这些技术有助于将基因表达数据与空间信息集成在一起进行聚类分析。虽然已经开发了许多聚类方法,但它们通常依赖于数据集的内在特征,而没有结合领域知识,如标记基因。我们认为结合标记基因信息可以增强细胞嵌入的学习并改善聚类结果。在本文中,我们介绍了MGGNN(标记基因引导图神经网络),一种旨在增强空间转录组学聚类的新方法。首先,我们使用基于图神经网络(GNN)的对比学习框架来训练模型。随后,我们使用标记基因表达标记的几个点对模型进行微调。在两个真实世界数据集上进行的仿真和实验表明,我们的模型优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信