From Patient Consultations to Graphs: Leveraging LLMs for Patient Journey Knowledge Graph Construction.

Hassan S Al Khatib, Sudip Mittal, Shahram Rahimi, Nina Marhamati, Sean Bozorgzad
{"title":"From Patient Consultations to Graphs: Leveraging LLMs for Patient Journey Knowledge Graph Construction.","authors":"Hassan S Al Khatib, Sudip Mittal, Shahram Rahimi, Nina Marhamati, Sean Bozorgzad","doi":"10.1109/cai64502.2025.00075","DOIUrl":null,"url":null,"abstract":"<p><p>The shift toward patient-centric healthcare requires understanding comprehensive patient journeys. Current healthcare data systems often fail to provide holistic representations, hindering coordinated care. Patient Journey Knowledge Graphs (PJKGs) solve this by integrating diverse patient information into unified, structured formats. This paper presents a methodology for constructing PJKGs using Large Language Models (LLMs) to process both clinical documentation and patient-provider conversations. These graphs capture temporal and causal relationships between clinical events, enabling advanced reasoning and personalized insights. Our evaluation of four LLMs (Claude 3.5, Mistral, Llama 3.1, ChatGPT4o) shows all achieved perfect structural compliance but varied in medical entity processing, computational efficiency, and semantic accuracy. This work advances patient-centric healthcare through actionable knowledge graphs (KGs) that enhance care coordination and outcome prediction.</p>","PeriodicalId":521037,"journal":{"name":"... IEEE Conference on Artificial Intelligence","volume":"2025 ","pages":"410-415"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cai64502.2025.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The shift toward patient-centric healthcare requires understanding comprehensive patient journeys. Current healthcare data systems often fail to provide holistic representations, hindering coordinated care. Patient Journey Knowledge Graphs (PJKGs) solve this by integrating diverse patient information into unified, structured formats. This paper presents a methodology for constructing PJKGs using Large Language Models (LLMs) to process both clinical documentation and patient-provider conversations. These graphs capture temporal and causal relationships between clinical events, enabling advanced reasoning and personalized insights. Our evaluation of four LLMs (Claude 3.5, Mistral, Llama 3.1, ChatGPT4o) shows all achieved perfect structural compliance but varied in medical entity processing, computational efficiency, and semantic accuracy. This work advances patient-centric healthcare through actionable knowledge graphs (KGs) that enhance care coordination and outcome prediction.

从患者咨询到图表:利用法学硕士构建患者旅程知识图谱。
向以患者为中心的医疗保健转变需要了解全面的患者旅程。目前的医疗保健数据系统往往不能提供整体表示,阻碍了协调护理。患者旅程知识图谱(PJKGs)通过将不同的患者信息集成到统一的结构化格式中来解决这个问题。本文提出了一种使用大型语言模型(llm)构建PJKGs来处理临床文档和患者-提供者对话的方法。这些图表捕捉了临床事件之间的时间和因果关系,从而实现了高级推理和个性化见解。我们对四种llm (Claude 3.5、Mistral、Llama 3.1、chatgpt40)的评估显示,它们都实现了完美的结构遵从性,但在医疗实体处理、计算效率和语义准确性方面存在差异。这项工作通过可操作的知识图(KGs)推进以患者为中心的医疗保健,增强护理协调和结果预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信