Amanda McGrosky, Leslie Ford, Elena Hinz, Srishti Sadhir, Faith Wambua, David R Braun, Matthew Douglass, Emmanuel Ndiema, Rosemary Nzunza, Asher Y Rosinger, Herman Pontzer
{"title":"High water turnover, hydration status, and heat stress among Daasanach pastoralists in a hot, semi-arid climate.","authors":"Amanda McGrosky, Leslie Ford, Elena Hinz, Srishti Sadhir, Faith Wambua, David R Braun, Matthew Douglass, Emmanuel Ndiema, Rosemary Nzunza, Asher Y Rosinger, Herman Pontzer","doi":"10.1093/emph/eoaf017","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Water is essential for proper physiological function. As temperatures increase, populations may struggle to meet water needs despite adaptations or acclimation; chronic dehydration can cause kidney damage. We evaluate how daily water requirements are associated with ambient temperature (ambT), wet bulb globe temperature (WBGT), urine specific gravity (USG; marker of hydration status), and albumin:creatinine ratio (ACR; kidney function biomarker) among Daasanach pastoralists living in a hot, dry northern Kenyan climate.</p><p><strong>Methodology: </strong>Water turnover (WT), USG, and ACR were measured using deuterium depletion (WT), refractometry (USG), and urine dipstick (ACR) for 76 participants aged 5-68 years in June 2022-23. Relationships between WT, ambT, WBGT, USG, and ACR were evaluated using linear and generalized linear models.</p><p><strong>Results: </strong>Adult WT was higher than mean values worldwide, peaking around 7 l/day. Water demands increase from childhood through middle age before falling in later life. Adult WT was not correlated with ambT or WBGT. About 2/11 children's and 7/36 adults' USG indicated dehydration; USG was not correlated with child WT but was negatively correlated with adult WT when accounting for body size. WT was lower among adults with high (≥30 mg/g) ACR; high ACR was associated with higher USG.</p><p><strong>Conclusions and implications: </strong>High Daasanach WT is likely driven by hot, semi-arid conditions, and lifestyle, rather than by compromised kidney function. Most participants were well-hydrated. Despite nonsignificant correlations between temperature and adult WT, high WT highlights the physiological demands of hot, dry climates. As climate change increases the global population exposed to hotter temperatures, global water needs will likely increase.</p>","PeriodicalId":12156,"journal":{"name":"Evolution, Medicine, and Public Health","volume":"13 1","pages":"215-228"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution, Medicine, and Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/emph/eoaf017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: Water is essential for proper physiological function. As temperatures increase, populations may struggle to meet water needs despite adaptations or acclimation; chronic dehydration can cause kidney damage. We evaluate how daily water requirements are associated with ambient temperature (ambT), wet bulb globe temperature (WBGT), urine specific gravity (USG; marker of hydration status), and albumin:creatinine ratio (ACR; kidney function biomarker) among Daasanach pastoralists living in a hot, dry northern Kenyan climate.
Methodology: Water turnover (WT), USG, and ACR were measured using deuterium depletion (WT), refractometry (USG), and urine dipstick (ACR) for 76 participants aged 5-68 years in June 2022-23. Relationships between WT, ambT, WBGT, USG, and ACR were evaluated using linear and generalized linear models.
Results: Adult WT was higher than mean values worldwide, peaking around 7 l/day. Water demands increase from childhood through middle age before falling in later life. Adult WT was not correlated with ambT or WBGT. About 2/11 children's and 7/36 adults' USG indicated dehydration; USG was not correlated with child WT but was negatively correlated with adult WT when accounting for body size. WT was lower among adults with high (≥30 mg/g) ACR; high ACR was associated with higher USG.
Conclusions and implications: High Daasanach WT is likely driven by hot, semi-arid conditions, and lifestyle, rather than by compromised kidney function. Most participants were well-hydrated. Despite nonsignificant correlations between temperature and adult WT, high WT highlights the physiological demands of hot, dry climates. As climate change increases the global population exposed to hotter temperatures, global water needs will likely increase.
期刊介绍:
About the Journal
Founded by Stephen Stearns in 2013, Evolution, Medicine, and Public Health is an open access journal that publishes original, rigorous applications of evolutionary science to issues in medicine and public health. It aims to connect evolutionary biology with the health sciences to produce insights that may reduce suffering and save lives. Because evolutionary biology is a basic science that reaches across many disciplines, this journal is open to contributions on a broad range of topics.