Collective fluctuations in the finite-size Kuramoto model below the critical coupling: Shot-noise approach.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0287893
S Yu Kirillov, V V Klinshov
{"title":"Collective fluctuations in the finite-size Kuramoto model below the critical coupling: Shot-noise approach.","authors":"S Yu Kirillov, V V Klinshov","doi":"10.1063/5.0287893","DOIUrl":null,"url":null,"abstract":"<p><p>The Kuramoto model, a paradigmatic framework for studying synchronization, exhibits a transition to collective oscillations only above a critical coupling strength in the thermodynamic limit. However, real-world systems are finite, and their dynamics can deviate significantly from mean-field predictions. Here, we investigate finite-size effects in the Kuramoto model below the critical coupling, where the theory in the thermodynamic limit predicts complete asynchrony. Using a shot-noise approach, we derive analytically the power spectrum of emergent collective fluctuations and demonstrate their dependence on the coupling strength. Numerical simulations confirm our theoretical results, though deviations arise near the critical coupling due to nonlinear effects. Our findings reveal how finite-size fluctuations sustain transient synchronization in regimes where classical mean-field theories fail, offering insights for applications in neural networks, power grids, and other coupled oscillator systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0287893","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Kuramoto model, a paradigmatic framework for studying synchronization, exhibits a transition to collective oscillations only above a critical coupling strength in the thermodynamic limit. However, real-world systems are finite, and their dynamics can deviate significantly from mean-field predictions. Here, we investigate finite-size effects in the Kuramoto model below the critical coupling, where the theory in the thermodynamic limit predicts complete asynchrony. Using a shot-noise approach, we derive analytically the power spectrum of emergent collective fluctuations and demonstrate their dependence on the coupling strength. Numerical simulations confirm our theoretical results, though deviations arise near the critical coupling due to nonlinear effects. Our findings reveal how finite-size fluctuations sustain transient synchronization in regimes where classical mean-field theories fail, offering insights for applications in neural networks, power grids, and other coupled oscillator systems.

临界耦合下有限尺寸Kuramoto模型中的集体波动:短噪声方法。
Kuramoto模型是研究同步的一个范例框架,它只在热力学极限的临界耦合强度以上才会向集体振荡过渡。然而,现实世界的系统是有限的,它们的动态可以显著偏离平均场预测。在这里,我们研究了临界耦合下Kuramoto模型中的有限尺寸效应,其中热力学极限理论预测完全异步。利用短噪声方法,我们解析地导出了紧急集体波动的功率谱,并证明了它们与耦合强度的依赖关系。数值模拟证实了我们的理论结果,但由于非线性效应,在临界耦合附近会出现偏差。我们的研究结果揭示了在经典平均场理论失效的情况下,有限大小的波动如何维持瞬态同步,为神经网络、电网和其他耦合振荡器系统的应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信