Structural sensitivity of a tri-trophic food chain model in a parameter plane.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0275113
Ruma Kumbhakar, Saheb Pal, Nikhil Pal
{"title":"Structural sensitivity of a tri-trophic food chain model in a parameter plane.","authors":"Ruma Kumbhakar, Saheb Pal, Nikhil Pal","doi":"10.1063/5.0275113","DOIUrl":null,"url":null,"abstract":"<p><p>Biological models are important in describing species interaction, disease spread, and environmental processes. One key aspect in improving the predictive capability of these models is deciding which parametrization is used to formulate the mathematical model. Considering two distinct functions with similar shapes and the same qualitative properties in a model can lead to markedly different model predictions. Such a phenomenon is recognized as the structural sensitivity of models. In this article, we investigate the structural sensitivity of a tri-trophic food chain model in a parameter plane by considering three nearly indistinguishable forms of the trophic function, namely, Holling type-II, Ivlev, and trigonometric. We use various tools, including bifurcation diagrams, isospike diagrams, and Lyapunov exponent diagrams, to explore the structural sensitivity of the model. The findings show that a functional form has a significant impact on the organization of periodic structures in the parameter plane. The model exhibits a range of diverse dynamics in a fixed parameter range with variations in the functional form. The survival of species and the nature of oscillations are heavily influenced by the model's constituent functions. Our results suggest that even slight variations in the functional response curves can lead to significant differences in the qualitative and quantitative dynamics of a food chain model.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0275113","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Biological models are important in describing species interaction, disease spread, and environmental processes. One key aspect in improving the predictive capability of these models is deciding which parametrization is used to formulate the mathematical model. Considering two distinct functions with similar shapes and the same qualitative properties in a model can lead to markedly different model predictions. Such a phenomenon is recognized as the structural sensitivity of models. In this article, we investigate the structural sensitivity of a tri-trophic food chain model in a parameter plane by considering three nearly indistinguishable forms of the trophic function, namely, Holling type-II, Ivlev, and trigonometric. We use various tools, including bifurcation diagrams, isospike diagrams, and Lyapunov exponent diagrams, to explore the structural sensitivity of the model. The findings show that a functional form has a significant impact on the organization of periodic structures in the parameter plane. The model exhibits a range of diverse dynamics in a fixed parameter range with variations in the functional form. The survival of species and the nature of oscillations are heavily influenced by the model's constituent functions. Our results suggest that even slight variations in the functional response curves can lead to significant differences in the qualitative and quantitative dynamics of a food chain model.

三营养食物链模型在参数平面上的结构敏感性。
生物学模型在描述物种相互作用、疾病传播和环境过程方面非常重要。提高这些模型的预测能力的一个关键方面是决定采用哪种参数化来制定数学模型。在模型中考虑具有相似形状和相同定性性质的两个不同函数会导致模型预测的显著不同。这种现象被认为是模型的结构敏感性。在本文中,我们研究了三营养食物链模型在参数平面上的结构敏感性,考虑了三种几乎不可区分的营养函数形式,即Holling - type-II, Ivlev和三角函数。我们使用各种工具,包括分岔图、等穗图和李雅普诺夫指数图,来探索模型的结构敏感性。结果表明,函数形式对参数平面上周期结构的组织有显著影响。该模型在一个固定的参数范围内表现出一系列不同的动态,并随函数形式的变化而变化。物种的生存和振荡的性质在很大程度上受到模型组成函数的影响。我们的研究结果表明,即使功能响应曲线的微小变化也会导致食物链模型的定性和定量动态的显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信