Repurposing of Anti-Infectives for the Management of Onchocerciasis Using Machine Learning and Protein Docking Studies.

IF 2.4 Q3 BIOCHEMICAL RESEARCH METHODS
Bioinformatics and Biology Insights Pub Date : 2025-09-04 eCollection Date: 2025-01-01 DOI:10.1177/11779322251368252
Cyril Tetteh, Andy Andoh Mensah, Bernice Ampomah, Mahmood B Oppong, Michael Lartey, Paul Owusu Donkor, Kwabena Fm Opuni, Lawrence A Adutwum
{"title":"Repurposing of Anti-Infectives for the Management of Onchocerciasis Using Machine Learning and Protein Docking Studies.","authors":"Cyril Tetteh, Andy Andoh Mensah, Bernice Ampomah, Mahmood B Oppong, Michael Lartey, Paul Owusu Donkor, Kwabena Fm Opuni, Lawrence A Adutwum","doi":"10.1177/11779322251368252","DOIUrl":null,"url":null,"abstract":"<p><p>There is a need to improve the discovery of new drugs for neglected tropical diseases (NTDs), as the lack of financial incentives has slowed their development. Currently, ivermectin and moxidectin are used in the management of onchocerciasis. We present a proof-of-concept study based on computational methods to find anti-infectives that can be repurposed or serve as lead compounds for onchocerciasis. A combination of exploratory data analysis, machine learning (ML), and molecular docking studies was used to evaluate 58 anti-infective agents. Out of the 58 test drugs, 14 were predicted by at least 5 ML models to be potentially useful in managing onchocerciasis. Molecular docking studies with the 14 predicted drugs using glutamate-gated chloride channel, a known target of ivermectin, an onchocerciasis drug, yielded good results. Cridanimod, diminazene, and vandetanib were the top 3 agents showing the highest binding affinities of -7.8, -7.2, and 7.1 kcal/mol, respectively, higher than the native ligand glutamate, which has a value of -4.5 kcal/mol. The binding interactions of these agents also showed overlaps with that of doramectin and pyrvinium agents that have demonstrated activity against onchocerciasis and ivermectin, the gold standard for onchocerciasis management. This study highlights the potential of cridanimod, diminazene, and vandetanib as promising candidates for developing new treatments for onchocerciasis.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"19 ","pages":"11779322251368252"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322251368252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

There is a need to improve the discovery of new drugs for neglected tropical diseases (NTDs), as the lack of financial incentives has slowed their development. Currently, ivermectin and moxidectin are used in the management of onchocerciasis. We present a proof-of-concept study based on computational methods to find anti-infectives that can be repurposed or serve as lead compounds for onchocerciasis. A combination of exploratory data analysis, machine learning (ML), and molecular docking studies was used to evaluate 58 anti-infective agents. Out of the 58 test drugs, 14 were predicted by at least 5 ML models to be potentially useful in managing onchocerciasis. Molecular docking studies with the 14 predicted drugs using glutamate-gated chloride channel, a known target of ivermectin, an onchocerciasis drug, yielded good results. Cridanimod, diminazene, and vandetanib were the top 3 agents showing the highest binding affinities of -7.8, -7.2, and 7.1 kcal/mol, respectively, higher than the native ligand glutamate, which has a value of -4.5 kcal/mol. The binding interactions of these agents also showed overlaps with that of doramectin and pyrvinium agents that have demonstrated activity against onchocerciasis and ivermectin, the gold standard for onchocerciasis management. This study highlights the potential of cridanimod, diminazene, and vandetanib as promising candidates for developing new treatments for onchocerciasis.

Abstract Image

Abstract Image

Abstract Image

利用机器学习和蛋白质对接研究重新利用抗感染药物治疗盘尾丝虫病。
有必要改进治疗被忽视的热带病的新药的发现,因为缺乏财政激励减缓了这些药物的开发。目前,伊维菌素和莫西丁用于盘尾丝虫病的治疗。我们提出了一项基于计算方法的概念验证研究,以寻找可重新利用或作为盘尾丝虫病先导化合物的抗感染药物。结合探索性数据分析、机器学习(ML)和分子对接研究,对58种抗感染药物进行了评估。在58种试验药物中,有14种被至少5ml的模型预测对控制盘尾丝虫病有潜在的作用。利用谷氨酸门控氯通道(已知的盘尾丝虫病药物伊维菌素的靶点)与14种预测药物的分子对接研究取得了良好的结果。cridanmod、diminazene和vandetanib的结合亲和力最高,分别为-7.8、-7.2和7.1 kcal/mol,高于天然配体谷氨酸的-4.5 kcal/mol。这些药物的结合相互作用也显示出与doramectin和pyrvinium药物的重叠,这些药物已经证明对盘尾丝虫病和伊维菌素(治疗盘尾丝虫病的金标准)有活性。这项研究强调了克里达摩、迪米那尼和万德替尼作为开发盘尾丝虫病新疗法的有希望的候选药物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信