{"title":"Characterization of fatty acid biosynthesis in microalga Scenedesmus - from the perspective of biofuel production","authors":"Harshit Kumar Sharma , Ma. Belén Velázquez , Noelia Marchetti , Ma. Victoria Busi , Ajay Kumar , Julieta Barchiesi , Chitralekha Nag Dasgupta","doi":"10.1016/j.bbapap.2025.141097","DOIUrl":null,"url":null,"abstract":"<div><div><em>Scenedesmus quadricauda</em>, a freshwater microalga, has gained attention for its high lipid accumulation potential. However, information on fatty acid (FA) biosynthesis pathways in <em>Scenedesmus</em> species remains limited. Biomass (1.010 gL<sup>−1</sup>) and lipid content (404 mgL<sup>−1</sup>) in <em>S. quadricauda</em> were found to be higher compared to other microalgal isolates under autotrophic nutrition. All biodiesel indices were found within the defined range of biodiesel (EN14214) and petro-diesel (EN590:2013) standards. The predominant fatty acid was palmitic acid (16:0), accounting for 33.201 % of the total. Further, homology study and 3D models of all subunits of <em>S. quadricauda</em> enzymes acetyl-CoA carboxylase (ACC) – the key enzyme of the FA biosynthetic pathway - identified distinct structural features. The biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), β-carboxyltransferases (β-CT) subunits of the heteromeric ACC of <em>S. quadricauda</em> showed homology with its eukaryotic counterparts, whereas the α -carboxyltransferases (α-CT) subunit showed homology with prokaryotic carboxyltransferase. In contrast, homologous enzymes in other <em>Scenedesmus</em> species were found to resemble prokaryotic forms exclusively. Conserved motifs such as the glycine-rich loop, ERYV motif, and AAAP motif were identified in the BC and BCCP enzymes. Malonyl-CoA:ACP transacylase (MAT) enzyme of <em>S. quadricauda</em> was of prokaryotic origin but showed structural divergence from its homologs in other <em>Scenedesmus</em> species. Fatty-acyl thioesterases (FAT) enzyme contained a duplication of two 4-hydroxybenzoyl-CoA thioesterase-like domains (4HBT). These unique sequences and binding sites in the fatty acid biosynthesis enzymes of <em>S. quadricauda</em> may contribute to the distinct regulation of carbon flux and lipid assembly compared to other species.</div></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1874 1","pages":"Article 141097"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963925000354","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scenedesmus quadricauda, a freshwater microalga, has gained attention for its high lipid accumulation potential. However, information on fatty acid (FA) biosynthesis pathways in Scenedesmus species remains limited. Biomass (1.010 gL−1) and lipid content (404 mgL−1) in S. quadricauda were found to be higher compared to other microalgal isolates under autotrophic nutrition. All biodiesel indices were found within the defined range of biodiesel (EN14214) and petro-diesel (EN590:2013) standards. The predominant fatty acid was palmitic acid (16:0), accounting for 33.201 % of the total. Further, homology study and 3D models of all subunits of S. quadricauda enzymes acetyl-CoA carboxylase (ACC) – the key enzyme of the FA biosynthetic pathway - identified distinct structural features. The biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), β-carboxyltransferases (β-CT) subunits of the heteromeric ACC of S. quadricauda showed homology with its eukaryotic counterparts, whereas the α -carboxyltransferases (α-CT) subunit showed homology with prokaryotic carboxyltransferase. In contrast, homologous enzymes in other Scenedesmus species were found to resemble prokaryotic forms exclusively. Conserved motifs such as the glycine-rich loop, ERYV motif, and AAAP motif were identified in the BC and BCCP enzymes. Malonyl-CoA:ACP transacylase (MAT) enzyme of S. quadricauda was of prokaryotic origin but showed structural divergence from its homologs in other Scenedesmus species. Fatty-acyl thioesterases (FAT) enzyme contained a duplication of two 4-hydroxybenzoyl-CoA thioesterase-like domains (4HBT). These unique sequences and binding sites in the fatty acid biosynthesis enzymes of S. quadricauda may contribute to the distinct regulation of carbon flux and lipid assembly compared to other species.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.