{"title":"Normalized Solutions for a Class of Fractional Choquard Equation With Potential and Combined Nonlinearities","authors":"Peng Ji, Fangqi Chen","doi":"10.1002/mma.11171","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the following fractional Choquard equation: \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mi>V</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mi>u</mi>\n <mo>+</mo>\n <mi>λ</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msub>\n <mo>∗</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n </msup>\n <mo>)</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\Delta \\right)}&amp;amp;#x0005E;su&amp;amp;#x0002B;V(x)u&amp;amp;#x0002B;\\lambda u&amp;amp;#x0003D;\\left({I}_{\\alpha}\\ast {\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{2_{\\alpha, s}&amp;amp;#x0005E;{\\ast }}\\right){\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{2_{\\alpha, s}&amp;amp;#x0005E;{\\ast }-2}u&amp;amp;#x0002B;\\mu {\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{q-2}u,\\kern0.60em x\\in {\\mathbb{R}}&amp;amp;#x0005E;N $$</annotation>\n </semantics></math>, with prescribed mass \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>∫</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msup>\n </mrow>\n </msub>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>x</mi>\n <mo>=</mo>\n <msup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\int}_{{\\mathbb{R}}&amp;amp;#x0005E;N}{\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;2 dx&amp;amp;#x0003D;{a}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math>, where \n<span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>></mo>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </mfrac>\n <mo>></mo>\n <mi>s</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo><</mo>\n <mi>α</mi>\n <mo><</mo>\n <mi>min</mi>\n <mo>{</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mn>4</mn>\n <mi>s</mi>\n <mo>}</mo>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ s\\in \\left(0,1\\right),\\mu &amp;gt;0,\\frac{N}{2}&amp;gt;s,0&amp;lt;\\alpha &amp;lt;\\min \\left\\{N,4s\\right\\},\\kern0.3em {I}_{\\alpha } $$</annotation>\n </semantics></math> is the Riesz potential, \n<span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation>$$ V $$</annotation>\n </semantics></math> is an external potential vanishing at infinity and the parameter \n<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>∈</mo>\n <mi>ℝ</mi>\n </mrow>\n <annotation>$$ \\lambda \\in \\mathbb{R} $$</annotation>\n </semantics></math> arises as Lagrange multiplier. The purpose of this paper is to establish the existence of solutions with prescribed norm to this class of nonlinear equations. Under some \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -subcritical, \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -critical and \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -supercritical perturbation \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n </mrow>\n <annotation>$$ \\mu {\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{q-2}u $$</annotation>\n </semantics></math>, respectively, we obtain several existence results. By limiting the range of \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>, for \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mover>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>,</mo>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n <mo>]</mo>\n </mrow>\n <annotation>$$ q\\in \\left(\\overline{q},{2}_s&amp;amp;#x0005E;{\\ast}\\right] $$</annotation>\n </semantics></math>, we prove that there exists a positive ground state normalized solution for the above problem with \n<span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ a&amp;gt;0 $$</annotation>\n </semantics></math>. Furthermore, for \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mover>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$$ q\\in \\left(2,\\overline{q}\\right) $$</annotation>\n </semantics></math>, we prove that there exists \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ {a}_0&amp;gt;0 $$</annotation>\n </semantics></math> such that the normalized solution with negative energy to the above problem can be obtained when \n<span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$$ a\\in \\left(0,{a}_0\\right) $$</annotation>\n </semantics></math>.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 15","pages":"14207-14221"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.11171","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the following fractional Choquard equation:
, with prescribed mass
, where
is the Riesz potential,
is an external potential vanishing at infinity and the parameter
arises as Lagrange multiplier. The purpose of this paper is to establish the existence of solutions with prescribed norm to this class of nonlinear equations. Under some
-subcritical,
-critical and
-supercritical perturbation
, respectively, we obtain several existence results. By limiting the range of
, for
, we prove that there exists a positive ground state normalized solution for the above problem with
. Furthermore, for
, we prove that there exists
such that the normalized solution with negative energy to the above problem can be obtained when
.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.