Normalized Ground State Solutions to HLS Upper Critical Choquard Equation With Mass Critical or Supercritical and Sobolev Critical Growth

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Jianlun Liu, Ziheng Zhang, Hong-Rui Sun
{"title":"Normalized Ground State Solutions to HLS Upper Critical Choquard Equation With Mass Critical or Supercritical and Sobolev Critical Growth","authors":"Jianlun Liu,&nbsp;Ziheng Zhang,&nbsp;Hong-Rui Sun","doi":"10.1002/mma.11177","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper is concerned with the following HLS upper critical Choquard equation with mass critical or supercritical and Sobolev critical growth \n<span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mtable>\n <mtr>\n <mtd>\n <mo>−</mo>\n <mspace></mspace>\n <mi>Δ</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mi>λ</mi>\n <mi>u</mi>\n <mo>+</mo>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>∗</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mspace></mspace>\n <mspace></mspace>\n <mtext>in</mtext>\n <mspace></mspace>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>,</mo>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <msub>\n <mrow>\n <mo>∫</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>x</mi>\n <mo>=</mo>\n <mi>c</mi>\n </mtd>\n </mtr>\n </mtable>\n </mrow>\n </mfenced>\n <mo>,</mo>\n </mrow>\n <annotation>$$ \\left\\{\\begin{array}{l}-\\Delta u&amp;amp;#x0003D;\\lambda u&amp;amp;#x0002B;\\mu {\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{p-2}u&amp;amp;#x0002B;{\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;4u&amp;amp;#x0002B;\\left({I}_2\\ast {\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;5\\right){\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;3u\\kern0.60em \\mathrm{in}\\kern0.3em {\\mathbb{R}}&amp;amp;#x0005E;3,\\\\ {}{\\int}_{{\\mathbb{R}}&amp;amp;#x0005E;3}{u}&amp;amp;#x0005E;2 dx&amp;amp;#x0003D;c\\end{array}\\right., $$</annotation>\n </semantics></math> where \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>,</mo>\n <mi>c</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mspace></mspace>\n <mfrac>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </mfrac>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mspace></mspace>\n <mi>λ</mi>\n <mo>∈</mo>\n <mi>ℝ</mi>\n </mrow>\n <annotation>$$ \\mu, c&amp;gt;0,\\kern0.3em \\frac{10}{3}\\le p&amp;lt;6,\\kern0.3em \\lambda \\in \\mathbb{R} $$</annotation>\n </semantics></math> is a Lagrange multiplier and \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {I}_2 $$</annotation>\n </semantics></math> is the Riesz potential. The novelty of this paper is that, utilizing the classical strategy due to Jeanjean (Nonlinear Analysis: Theory, Methods &amp; Applications, 28(1997), 1633-1659) and after some subtle energy estimate, we show the existence of mountain pass type normalized ground state solutions for any \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ \\mu &amp;gt;0 $$</annotation>\n </semantics></math>. In this sense, the novelty of this paper includes three aspects: when \n<span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </mfrac>\n <mo>&lt;</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mn>6</mn>\n </mrow>\n <annotation>$$ \\frac{10}{3}&amp;lt;p&amp;lt;6 $$</annotation>\n </semantics></math>, we do not need to add any constraints to the parameter \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ \\mu &amp;gt;0 $$</annotation>\n </semantics></math>; meanwhile, the mountain pass type solution happens to be one ground states; in addition, the \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math>-critical perturbation, that is, \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation>$$ p&amp;amp;#x0003D;\\frac{10}{3} $$</annotation>\n </semantics></math> is considered, which generalize and improve the recent results.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 15","pages":"14276-14289"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.11177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the following HLS upper critical Choquard equation with mass critical or supercritical and Sobolev critical growth Δ u = λ u + μ | u | p 2 u + | u | 4 u + ( I 2 | u | 5 ) | u | 3 u in 3 , 3 u 2 d x = c , $$ \left\{\begin{array}{l}-\Delta u&amp;#x0003D;\lambda u&amp;#x0002B;\mu {\left&amp;#x0007C;u\right&amp;#x0007C;}&amp;#x0005E;{p-2}u&amp;#x0002B;{\left&amp;#x0007C;u\right&amp;#x0007C;}&amp;#x0005E;4u&amp;#x0002B;\left({I}_2\ast {\left&amp;#x0007C;u\right&amp;#x0007C;}&amp;#x0005E;5\right){\left&amp;#x0007C;u\right&amp;#x0007C;}&amp;#x0005E;3u\kern0.60em \mathrm{in}\kern0.3em {\mathbb{R}}&amp;#x0005E;3,\\ {}{\int}_{{\mathbb{R}}&amp;#x0005E;3}{u}&amp;#x0005E;2 dx&amp;#x0003D;c\end{array}\right., $$ where μ , c > 0 , 10 3 p < 6 , λ $$ \mu, c&gt;0,\kern0.3em \frac{10}{3}\le p&lt;6,\kern0.3em \lambda \in \mathbb{R} $$ is a Lagrange multiplier and I 2 $$ {I}_2 $$ is the Riesz potential. The novelty of this paper is that, utilizing the classical strategy due to Jeanjean (Nonlinear Analysis: Theory, Methods & Applications, 28(1997), 1633-1659) and after some subtle energy estimate, we show the existence of mountain pass type normalized ground state solutions for any μ > 0 $$ \mu &gt;0 $$ . In this sense, the novelty of this paper includes three aspects: when 10 3 < p < 6 $$ \frac{10}{3}&lt;p&lt;6 $$ , we do not need to add any constraints to the parameter μ > 0 $$ \mu &gt;0 $$ ; meanwhile, the mountain pass type solution happens to be one ground states; in addition, the L 2 $$ {L}&amp;#x0005E;2 $$ -critical perturbation, that is, p = 10 3 $$ p&amp;#x0003D;\frac{10}{3} $$ is considered, which generalize and improve the recent results.

具有质量临界或超临界和Sobolev临界增长的HLS上临界Choquard方程的归一化基态解
本文讨论了具有质量临界或超临界和Sobolev临界增长- Δ u = λ的HLS上临界Choquard方程U + μ | U | p−2U + b|u b|u+ (I 2 * | u| 5) |, |3u在m中3 ,∫ ℝ3 u 2d x = c, $$ \left\{\begin{array}{l}-\Delta u&amp;#x0003D;# x0002B \λu&音箱;;μ\ {\ left&音箱;# x0007C; u \ right&音箱;# x0007C;}, amp; # x0005E; {p 2} u&音箱;# x0002B; {\ left&音箱;# x0007C; u \ right&音箱;# x0007C;}, amp; # x0005E; 4 u&音箱;# x0002B;\left({I}_2\ast {\left&amp;#x0007C;}&amp;#x0005E;5\right){\left&amp;#x0007C;u\right&amp;#x0007C;}&amp;#x0005E;3u\kern0.60em \mathrm{in}\kern0。 3他们{\ mathbb {R}}, amp; # x0005E;3 \ \ {} {\ int} _ {{\ mathbb {R}}, amp; # x0005E; 3}{你},amp; # x0005E;2 dx&音箱;# x0003D; c数组{}\ \端。, $$ where μ, c &gt; 0, 10 3≤p &lt; 6,λ∈λ $$ \mu,c&gt;0,\kern0.3em \frac{10}{3}\ le&lt;6,\kern0.3em \lambda \in \mathbb{R} $$是拉格朗日乘子,i2 $$ {I}_2 $$是Riesz势。本文的新颖之处在于,利用Jeanjean(非线性分析:理论,方法和应用,28(1997),1633-1659)的经典策略,经过一些微妙的能量估计,我们证明了对于任意μ &gt; 0 $$ \mu &gt;0 $$。从这个意义上说,本文的新颖性包括三个方面:当10 3 &lt; p &lt; 6 $$ \frac{10}{3}&lt;p&lt;6 $$,我们不需要给参数μ &gt; 0 $$ \mu &gt;0 $$;同时,山口型解恰好是一个基态;此外,L 2 $$ {L}&amp;#x0005E;2 $$临界摄动,即p = 10 3 $$ p&amp;#x0003D;\frac{10}{3} $$,对最近的结果进行了推广和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信