Hybrid Quantum-Classical Convolutional Neural Network for Detection and Identification of Power Quality Disturbance

IF 2.8 Q3 QUANTUM SCIENCE & TECHNOLOGY
Yue Li, Xinhao Li, Haopeng Jia, Anjiang Liu, Qingle Wang, Shuqing Hao, Hao Liu
{"title":"Hybrid Quantum-Classical Convolutional Neural Network for Detection and Identification of Power Quality Disturbance","authors":"Yue Li,&nbsp;Xinhao Li,&nbsp;Haopeng Jia,&nbsp;Anjiang Liu,&nbsp;Qingle Wang,&nbsp;Shuqing Hao,&nbsp;Hao Liu","doi":"10.1049/qtc2.70013","DOIUrl":null,"url":null,"abstract":"<p>Power quality disturbances (PQDs) pose significant challenges to modern power systems, necessitating precise detection and identification to mitigate their impacts and enhance grid robustness. In this paper, we propose a hybrid quantum-classical convolutional neural network model (PQDs-QC-CNN) for detecting and identifying power quality disturbances with high efficiency. The model employs a hierarchical framework consisting of quantum convolutional layers, fully connected layers and softmax regression, which can effectively extract multiscale features from disturbance data while mitigating overfitting. Utilising <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation> $N$</annotation>\n </semantics></math> quantum bits, the model achieves a time complexity of <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mtext>poly</mtext>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O(\\text{poly}(N))$</annotation>\n </semantics></math> and a space complexity of <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O(N)$</annotation>\n </semantics></math>, ensuring scalability and efficiency. By conducting experiments on the datasets generated in compliance with IEEE Std 1159–2019, the results show a 100% detection accuracy and 99.56% identification accuracy, even with minimal quantum bits and simple configurations. Additionally, the model demonstrates robust noise resistance, maintaining approximately 98% identification accuracy across various noise scenarios. PQDs-QC-CNN not only shows promise for power system applications but also explores new avenues for quantum algorithm integration in smart grid technologies.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.70013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Power quality disturbances (PQDs) pose significant challenges to modern power systems, necessitating precise detection and identification to mitigate their impacts and enhance grid robustness. In this paper, we propose a hybrid quantum-classical convolutional neural network model (PQDs-QC-CNN) for detecting and identifying power quality disturbances with high efficiency. The model employs a hierarchical framework consisting of quantum convolutional layers, fully connected layers and softmax regression, which can effectively extract multiscale features from disturbance data while mitigating overfitting. Utilising N $N$ quantum bits, the model achieves a time complexity of O ( poly ( N ) ) $O(\text{poly}(N))$ and a space complexity of O ( N ) $O(N)$ , ensuring scalability and efficiency. By conducting experiments on the datasets generated in compliance with IEEE Std 1159–2019, the results show a 100% detection accuracy and 99.56% identification accuracy, even with minimal quantum bits and simple configurations. Additionally, the model demonstrates robust noise resistance, maintaining approximately 98% identification accuracy across various noise scenarios. PQDs-QC-CNN not only shows promise for power system applications but also explores new avenues for quantum algorithm integration in smart grid technologies.

Abstract Image

Abstract Image

Abstract Image

混合量子经典卷积神经网络在电能质量扰动检测与识别中的应用
电能质量扰动(PQDs)对现代电力系统构成了重大挑战,需要精确的检测和识别来减轻其影响并增强电网的鲁棒性。本文提出了一种混合量子-经典卷积神经网络模型(PQDs-QC-CNN),用于高效检测和识别电能质量干扰。该模型采用由量子卷积层、全连接层和softmax回归组成的分层框架,可以有效地从干扰数据中提取多尺度特征,同时减少过拟合。利用N$ N$量子比特,该模型的时间复杂度为O(poly (N))$ O(\text{poly}(N))$和一个空格复杂度为O(N)$ O(N)$,保证了可扩展性和效率。通过对符合IEEE标准1159-2019的数据集进行实验,即使在最小量子位和简单配置的情况下,检测准确率也达到100%,识别准确率达到99.56%。此外,该模型具有强大的抗噪声能力,在各种噪声情况下保持约98%的识别准确率。PQDs-QC-CNN不仅显示了电力系统应用的前景,而且为量子算法在智能电网技术中的集成探索了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信