{"title":"Solutions to Two Problems on a Class of Sequences Converging to the Number e","authors":"Stevo Stević","doi":"10.1002/mma.11196","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We solve two problems concerning the family of real sequences \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mo>=</mo>\n <msup>\n <mrow>\n <mfenced>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mfrac>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </mfrac>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n <mfenced>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mfrac>\n <mrow>\n <mi>α</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </mfrac>\n </mrow>\n </mfenced>\n <mo>,</mo>\n <mspace></mspace>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>ℕ</mi>\n </mrow>\n <annotation>$$ {a}_n&amp;amp;#x0005E;{\\left(\\alpha \\right)}&amp;amp;#x0003D;{\\left(1&amp;amp;#x0002B;\\frac{1}{n}\\right)}&amp;amp;#x0005E;n\\left(1&amp;amp;#x0002B;\\frac{\\alpha }{n}\\right),\\kern0.3em n\\in \\mathbb{N} $$</annotation>\n </semantics></math>, where \n<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\alpha \\in \\left[0,\\infty \\right) $$</annotation>\n </semantics></math>, considerably improving and complementing the results in the literature. Namely, we find all the values of the parameter \n<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> such that \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mo><</mo>\n <mi>e</mi>\n </mrow>\n <annotation>$$ {a}_n&amp;amp;#x0005E;{\\left(\\alpha \\right)}&amp;lt;e $$</annotation>\n </semantics></math>, for every \n<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>ℕ</mi>\n </mrow>\n <annotation>$$ n\\in \\mathbb{N} $$</annotation>\n </semantics></math>, and find all the values of the parameter such that the sequence \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {a}_n&amp;amp;#x0005E;{\\left(\\alpha \\right)} $$</annotation>\n </semantics></math> is strictly increasing on the whole domain (i.e., on the set \n<span></span><math>\n <semantics>\n <mrow>\n <mi>ℕ</mi>\n </mrow>\n <annotation>$$ \\mathbb{N} $$</annotation>\n </semantics></math>). An interesting and highly nontrivial auxiliary result about the behavior of a real function is obtained.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 15","pages":"14543-14548"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.11196","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We solve two problems concerning the family of real sequences
, where
, considerably improving and complementing the results in the literature. Namely, we find all the values of the parameter
such that
, for every
, and find all the values of the parameter such that the sequence
is strictly increasing on the whole domain (i.e., on the set
). An interesting and highly nontrivial auxiliary result about the behavior of a real function is obtained.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.