P. S. Patnaik, D. S. Kumar, M. Ramanaiah, B. Simhachalam
{"title":"Collecting the Structural, Mossbauer, and Raman Analysis of PrFeO3 Nanoparticles Derived from the Sol-Gel Technique","authors":"P. S. Patnaik, D. S. Kumar, M. Ramanaiah, B. Simhachalam","doi":"10.1134/S1990793125700630","DOIUrl":null,"url":null,"abstract":"<p>In this investigation a sol-gel technique by using tartaric acid as a chelating agent was used to prepare one of the rare earth orthoferrite PrFeO<sub>3</sub> nanoparticles. The prepared PrFeO<sub>3</sub> nanoparticles were characterized using different analytical techniques such as X-ray diffraction, scanning electron microscopy, Raman spectroscopy and UV-visible absorption spectroscopy. Thermo-gravimetric analysis data was employed for calcining the PrFeO<sub>3</sub> synthesis sample, and there was no weight loss (%) observed above 800°C. X-ray diffraction technique reviles the formation of single phase of PrFeO<sub>3</sub> with Orthorhombic crystal structure. Lattice parameters, dislocation density of the synthesized PrFeO<sub>3</sub> nanoparticle were also calculated using the X-ray diffraction data. The uniform spherical shaped particles were observed through scanning electron microscopy analysis and it average grain size was found to 350 nm. The calculated optical bandgap of PrFeO<sub>3</sub> nanoparticle was found to be 1.97 eV. X-ray photoluminescence spectra suggest that, the Pr is existing in +3 oxidation state and Fe is exist in mixed oxidation states (+2 and +3).</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 4","pages":"973 - 981"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793125700630","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this investigation a sol-gel technique by using tartaric acid as a chelating agent was used to prepare one of the rare earth orthoferrite PrFeO3 nanoparticles. The prepared PrFeO3 nanoparticles were characterized using different analytical techniques such as X-ray diffraction, scanning electron microscopy, Raman spectroscopy and UV-visible absorption spectroscopy. Thermo-gravimetric analysis data was employed for calcining the PrFeO3 synthesis sample, and there was no weight loss (%) observed above 800°C. X-ray diffraction technique reviles the formation of single phase of PrFeO3 with Orthorhombic crystal structure. Lattice parameters, dislocation density of the synthesized PrFeO3 nanoparticle were also calculated using the X-ray diffraction data. The uniform spherical shaped particles were observed through scanning electron microscopy analysis and it average grain size was found to 350 nm. The calculated optical bandgap of PrFeO3 nanoparticle was found to be 1.97 eV. X-ray photoluminescence spectra suggest that, the Pr is existing in +3 oxidation state and Fe is exist in mixed oxidation states (+2 and +3).
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.