Numerical study of uranium nitride dissociation time at various temperatures using the EVKLID/V2 code

IF 0.3 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY
E. V. Usov, R. E. Ivanov, V. I. Chukhno, A. A. Butov, I. G. Kudashov, V. D. Ozrin, N. A. Mosunova, V. F. Strizhov
{"title":"Numerical study of uranium nitride dissociation time at various temperatures using the EVKLID/V2 code","authors":"E. V. Usov,&nbsp;R. E. Ivanov,&nbsp;V. I. Chukhno,&nbsp;A. A. Butov,&nbsp;I. G. Kudashov,&nbsp;V. D. Ozrin,&nbsp;N. A. Mosunova,&nbsp;V. F. Strizhov","doi":"10.1007/s10512-025-01237-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Dense nitride fuel is promising for reactors on fast neutrons (fast reactors) with liquid-metal coolant to solve the problems of closing the nuclear fuel cycle. An important aspect of research involves the study of the nitride fuel dissociation rate under various conditions, including that characteristic of severe accidents.</p><h3>Aim</h3><p>To numerically study the time of uranium nitride fuel dissociation under various external conditions characteristic of severe accidents with core destruction.</p><h3>Materials and methods</h3><p>The object of the study is uranium nitride. The research method is numerical simulation using the validated SAFR severe accident module of the EVKLID/V2 integral code developed by the IBRAE RAS, Afrikantov OKBM JSC, NIKIET JSC, and NRC Kurchatov Institute (Russian Federation). The SAFR module uses a model for calculating the behavior of nitride fuel elements in severe accidents. Computational methods of the SAFR module include enthalpy formulation to solve the thermal conductivity equation; the melt flow is simulated by solving one-dimensional equations of mass, energy, and momentum conservation.</p><h3>Results</h3><p>Depending on the properties of the contact environment, time of fuel dissociation may vary by several orders of magnitude. In a leaking fuel element with a helium atmosphere without nitrogen at a relatively high temperature of 1800 ℃, the dissociation time for 50% of uranium nitride ranges from 40 days to ~3 years, depending on the conditions of wetting the fuel column by liquid uranium. At high values, close to the nitride melting point of 2600 ℃, the dissociation time is from hundreds of seconds to 1 h. The presence of nitrogen with a partial pressure of ~2.5 atm completely suppresses dissociation up to melting.</p><h3>Conclusion</h3><p>The longest time of uranium nitride dissociation, and therefore its greatest thermochemical stability, is observed during dissociation into a gas atmosphere in the presence of a residual melt film on the fuel surface.</p></div>","PeriodicalId":480,"journal":{"name":"Atomic Energy","volume":"138 3","pages":"133 - 138"},"PeriodicalIF":0.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10512-025-01237-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Dense nitride fuel is promising for reactors on fast neutrons (fast reactors) with liquid-metal coolant to solve the problems of closing the nuclear fuel cycle. An important aspect of research involves the study of the nitride fuel dissociation rate under various conditions, including that characteristic of severe accidents.

Aim

To numerically study the time of uranium nitride fuel dissociation under various external conditions characteristic of severe accidents with core destruction.

Materials and methods

The object of the study is uranium nitride. The research method is numerical simulation using the validated SAFR severe accident module of the EVKLID/V2 integral code developed by the IBRAE RAS, Afrikantov OKBM JSC, NIKIET JSC, and NRC Kurchatov Institute (Russian Federation). The SAFR module uses a model for calculating the behavior of nitride fuel elements in severe accidents. Computational methods of the SAFR module include enthalpy formulation to solve the thermal conductivity equation; the melt flow is simulated by solving one-dimensional equations of mass, energy, and momentum conservation.

Results

Depending on the properties of the contact environment, time of fuel dissociation may vary by several orders of magnitude. In a leaking fuel element with a helium atmosphere without nitrogen at a relatively high temperature of 1800 ℃, the dissociation time for 50% of uranium nitride ranges from 40 days to ~3 years, depending on the conditions of wetting the fuel column by liquid uranium. At high values, close to the nitride melting point of 2600 ℃, the dissociation time is from hundreds of seconds to 1 h. The presence of nitrogen with a partial pressure of ~2.5 atm completely suppresses dissociation up to melting.

Conclusion

The longest time of uranium nitride dissociation, and therefore its greatest thermochemical stability, is observed during dissociation into a gas atmosphere in the presence of a residual melt film on the fuel surface.

使用EVKLID/V2代码对不同温度下氮化铀解离时间进行数值研究
致密氮化物燃料是一种很有前途的快中子反应堆(快堆),用液态金属冷却剂来解决核燃料循环关闭的问题。研究的一个重要方面是研究各种条件下,包括严重事故特征下氮燃料的解离率。目的对严重堆芯破坏事故中氮化铀燃料在各种外界条件下的解离时间进行数值研究。材料与方法以氮化铀为研究对象。研究方法是使用由IBRAE RAS、Afrikantov OKBM JSC、NIKIET JSC和NRC Kurchatov研究所(俄罗斯联邦)开发的EVKLID/V2积分代码中经过验证的SAFR严重事故模块进行数值模拟。SAFR模块使用一个模型来计算氮化燃料元件在严重事故中的行为。SAFR模块的计算方法包括用焓公式求解导热系数方程;通过求解一维质量、能量和动量守恒方程来模拟熔体流动。结果根据接触环境的性质,燃料的解离时间可能会有几个数量级的变化。在一个泄漏的燃料元件中,在温度相对较高的1800 ℃的氦气氛中,50%的氮化铀的解离时间从40天到3年不等,这取决于液体铀润湿燃料柱的条件。在高值时,接近2600 ℃的氮化物熔点,解离时间从几百秒到1 h。分压为~2.5 atm的氮气的存在完全抑制解离直至熔化。结论氮化铀解离时间最长,因此其热化学稳定性最好的是在燃料表面存在残余熔膜的情况下解离到气体气氛中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atomic Energy
Atomic Energy 工程技术-核科学技术
CiteScore
1.00
自引率
20.00%
发文量
100
审稿时长
4-8 weeks
期刊介绍: Atomic Energy publishes papers and review articles dealing with the latest developments in the peaceful uses of atomic energy. Topics include nuclear chemistry and physics, plasma physics, accelerator characteristics, reactor economics and engineering, applications of isotopes, and radiation monitoring and safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信