Biomimetic Gradient Fibrous Aerogel Pressure Sensor Featuring Ultrawide Sensitive Range and Extraordinary Pressure Resolution for Machine Learning Enabled Posture Recognition

IF 21.3 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gaoen Jia, Xiaoyan Yue, Lingmeihui Duan, Rui Yin, Caofeng Pan, Hu Liu, Chuntai Liu, Changyu Shen
{"title":"Biomimetic Gradient Fibrous Aerogel Pressure Sensor Featuring Ultrawide Sensitive Range and Extraordinary Pressure Resolution for Machine Learning Enabled Posture Recognition","authors":"Gaoen Jia,&nbsp;Xiaoyan Yue,&nbsp;Lingmeihui Duan,&nbsp;Rui Yin,&nbsp;Caofeng Pan,&nbsp;Hu Liu,&nbsp;Chuntai Liu,&nbsp;Changyu Shen","doi":"10.1007/s42765-025-00576-z","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving human skin-like sensitivity and wide-range pressure detection remains a significant challenge in the development of wearable pressure sensors. In this study, we engineered and fabricated a fibrous polyimide fiber (PIF)/carbon nanotube (CNT) composite aerogel with a gradient structure using a layer-by-layer freeze casting technique, aiming to overcome the limitations of traditional pressure sensors. Finite element analysis (FEA) reveals that this innovative gradient structure mimics the unique microstructure of human skin, enabling the sensor to detect a broad spectrum of pressure stimuli, ranging from subtle pressures as low as 10 Pa to intense pressures up to 1.58 MPa with exceptional sensitivity. Moreover, the sensor exhibits extraordinary pressure resolution across the entire pressure range, particularly at 1 MPa (0.001%). Additionally, the sensor demonstrates remarkable thermal stability, operating reliably across a wide temperature range from − 150 to 200 °C, making it suitable for extreme environments such as deep space exploration. When integrated with machine learning algorithms, the sensor shows great potential for real-time physiological monitoring, fitness tracking, and motion recognition. The proposed gradient fibrous pressure sensor, with its high sensitivity and resolution over a wide pressure range, paves the way for new opportunities in human–machine interaction.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 5","pages":"1632 - 1647"},"PeriodicalIF":21.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00576-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving human skin-like sensitivity and wide-range pressure detection remains a significant challenge in the development of wearable pressure sensors. In this study, we engineered and fabricated a fibrous polyimide fiber (PIF)/carbon nanotube (CNT) composite aerogel with a gradient structure using a layer-by-layer freeze casting technique, aiming to overcome the limitations of traditional pressure sensors. Finite element analysis (FEA) reveals that this innovative gradient structure mimics the unique microstructure of human skin, enabling the sensor to detect a broad spectrum of pressure stimuli, ranging from subtle pressures as low as 10 Pa to intense pressures up to 1.58 MPa with exceptional sensitivity. Moreover, the sensor exhibits extraordinary pressure resolution across the entire pressure range, particularly at 1 MPa (0.001%). Additionally, the sensor demonstrates remarkable thermal stability, operating reliably across a wide temperature range from − 150 to 200 °C, making it suitable for extreme environments such as deep space exploration. When integrated with machine learning algorithms, the sensor shows great potential for real-time physiological monitoring, fitness tracking, and motion recognition. The proposed gradient fibrous pressure sensor, with its high sensitivity and resolution over a wide pressure range, paves the way for new opportunities in human–machine interaction.

Graphical abstract

仿生梯度纤维气凝胶压力传感器,具有超宽的敏感范围和非凡的压力分辨率,用于机器学习支持的姿势识别
在可穿戴压力传感器的发展中,实现类似皮肤的灵敏度和大范围的压力检测仍然是一个重大挑战。在这项研究中,我们设计并制造了具有梯度结构的纤维聚酰亚胺纤维(PIF)/碳纳米管(CNT)复合气凝胶,采用逐层冷冻铸造技术,旨在克服传统压力传感器的局限性。有限元分析(FEA)表明,这种创新的梯度结构模仿了人类皮肤的独特微观结构,使传感器能够检测到广泛的压力刺激,从低至10 Pa的微小压力到高达1.58 MPa的强烈压力,具有卓越的灵敏度。此外,该传感器在整个压力范围内表现出非凡的压力分辨率,特别是在1mpa(0.001%)时。此外,该传感器具有出色的热稳定性,可在- 150°C至200°C的宽温度范围内可靠运行,适用于深空探测等极端环境。当与机器学习算法集成时,传感器在实时生理监测,健身跟踪和运动识别方面显示出巨大的潜力。所提出的梯度纤维压力传感器具有高灵敏度和宽压力范围的分辨率,为人机交互的新机遇铺平了道路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信