On perfect symmetric rank-metric codes

IF 0.5 4区 数学 Q3 MATHEMATICS
Usman Mushrraf, Ferdinando Zullo
{"title":"On perfect symmetric rank-metric codes","authors":"Usman Mushrraf,&nbsp;Ferdinando Zullo","doi":"10.1007/s00013-025-02145-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\textrm{Sym}_q(m)\\)</span> be the space of symmetric matrices in <span>\\({\\mathbb {F}}_q^{m\\times m}\\)</span>. A subspace of <span>\\(\\textrm{Sym}_q(m)\\)</span> equipped with the rank distance is called an <span>\\({{\\mathbb {F}}}_{q}\\)</span>-linear symmetric rank-metric code. In this paper, we study the covering properties of <span>\\({{\\mathbb {F}}}_{q}\\)</span>-linear symmetric rank-metric codes. First we characterize <span>\\({{\\mathbb {F}}}_{q}\\)</span>-linear symmetric rank-metric codes which are perfect, i.e., that satisfy the equality in the sphere-packing like bound. We show that, despite the rank-metric case, there are non-trivial perfect codes. Indeed, we prove that the only perfect non-trivial <span>\\({{\\mathbb {F}}}_{q}\\)</span>-linear symmetric rank-metric codes in <span>\\(\\textrm{Sym}_q(m)\\)</span> are the symmetric MRD codes with minimum distance 3 and <i>m</i> odd. Also, we characterize families of codes which are quasi-perfect.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 3","pages":"259 - 271"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02145-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\textrm{Sym}_q(m)\) be the space of symmetric matrices in \({\mathbb {F}}_q^{m\times m}\). A subspace of \(\textrm{Sym}_q(m)\) equipped with the rank distance is called an \({{\mathbb {F}}}_{q}\)-linear symmetric rank-metric code. In this paper, we study the covering properties of \({{\mathbb {F}}}_{q}\)-linear symmetric rank-metric codes. First we characterize \({{\mathbb {F}}}_{q}\)-linear symmetric rank-metric codes which are perfect, i.e., that satisfy the equality in the sphere-packing like bound. We show that, despite the rank-metric case, there are non-trivial perfect codes. Indeed, we prove that the only perfect non-trivial \({{\mathbb {F}}}_{q}\)-linear symmetric rank-metric codes in \(\textrm{Sym}_q(m)\) are the symmetric MRD codes with minimum distance 3 and m odd. Also, we characterize families of codes which are quasi-perfect.

关于完全对称秩-度量码
设\(\textrm{Sym}_q(m)\)为\({\mathbb {F}}_q^{m\times m}\)中对称矩阵的空间。具有秩距离的\(\textrm{Sym}_q(m)\)子空间称为\({{\mathbb {F}}}_{q}\) -线性对称秩-度量码。本文研究了\({{\mathbb {F}}}_{q}\) -线性对称秩-度量码的覆盖性质。首先,我们刻画了\({{\mathbb {F}}}_{q}\) -线性对称秩-度量码,它是完美的,即在类球填充界中满足等式。我们证明,尽管存在秩-度量情况,但存在非平凡的完美码。事实上,我们证明了\(\textrm{Sym}_q(m)\)中唯一完美的非平凡\({{\mathbb {F}}}_{q}\) -线性对称秩-度量码是最小距离为3且奇数为m的对称MRD码。此外,我们还描述了准完美的代码族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信