Effect of an External Electric Field on the Performance of an Electroosmotically-Driven Micromixer with Triangular-Shaped Electrodes: Design and Simulation

IF 1.4 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Elnaz Poorreza
{"title":"Effect of an External Electric Field on the Performance of an Electroosmotically-Driven Micromixer with Triangular-Shaped Electrodes: Design and Simulation","authors":"Elnaz Poorreza","doi":"10.1134/S1990793125700642","DOIUrl":null,"url":null,"abstract":"<p>An electroosmosis micromixer is an essential element within microfluidic systems, designed to effectively facilitate the mixing of fluids at the microscale. These devices are essential across various scientific disciplines, such as chemistry, biology, and medicine, due to their ability to manipulate minute volumes with extraordinary precision and minimal reagent loss. Electroosmosis can be defined as the movement of fluids through micro/nano-channels, driven by an externally applied electric field. In the current investigation, a micromixer that is driven by electroosmosis phenomena, has been developed to combine two disparate fluids, which are introduced into the system through separate inlets, resulting in a combined microchannel. To improve this mixing system, a sinusoidal electric potential is systematically applied across the triangular-shaped electrodes, characterized by a peak value of 0.1 V and an operational frequency of 8 Hz. The simulation results obtained from this configuration indicate that the micromixer demonstrates an exceptional mixing efficiency approaching a value of 0.96, thereby highlighting its considerable potential for beneficial applications across a diverse array of fields, particularly within microfluidics, biochemistry, and biomedical sciences.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 4","pages":"1003 - 1010"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793125700642","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An electroosmosis micromixer is an essential element within microfluidic systems, designed to effectively facilitate the mixing of fluids at the microscale. These devices are essential across various scientific disciplines, such as chemistry, biology, and medicine, due to their ability to manipulate minute volumes with extraordinary precision and minimal reagent loss. Electroosmosis can be defined as the movement of fluids through micro/nano-channels, driven by an externally applied electric field. In the current investigation, a micromixer that is driven by electroosmosis phenomena, has been developed to combine two disparate fluids, which are introduced into the system through separate inlets, resulting in a combined microchannel. To improve this mixing system, a sinusoidal electric potential is systematically applied across the triangular-shaped electrodes, characterized by a peak value of 0.1 V and an operational frequency of 8 Hz. The simulation results obtained from this configuration indicate that the micromixer demonstrates an exceptional mixing efficiency approaching a value of 0.96, thereby highlighting its considerable potential for beneficial applications across a diverse array of fields, particularly within microfluidics, biochemistry, and biomedical sciences.

Abstract Image

Abstract Image

外电场对三角电极电渗透驱动微混合器性能的影响:设计与仿真
电渗透微混合器是微流体系统中必不可少的元件,旨在有效地促进微尺度流体的混合。这些设备在化学、生物学和医学等各种科学学科中都是必不可少的,因为它们能够以非凡的精度和最小的试剂损失操纵微小体积。电渗透可以定义为流体通过微/纳米通道的运动,由外部施加的电场驱动。在目前的研究中,一种由电渗透现象驱动的微混合器已经被开发出来,可以将两种不同的流体结合起来,通过不同的入口引入系统,形成一个组合的微通道。为了改进混合系统,在三角形电极上系统地施加正弦电位,其峰值为0.1 V,工作频率为8 Hz。从该配置获得的模拟结果表明,微混合器显示出优异的混合效率,接近0.96的值,从而突出了其在各种领域的有益应用的巨大潜力,特别是在微流体,生物化学和生物医学科学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Physical Chemistry B
Russian Journal of Physical Chemistry B 化学-物理:原子、分子和化学物理
CiteScore
2.20
自引率
71.40%
发文量
106
审稿时长
4-8 weeks
期刊介绍: Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信