Logarithmic \({\varvec{f}}({\varvec{Q}})\) gravity with parametrization of deceleration parameter and energy conditions

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
S. N. Bayaskar, A. A. Q. Shoeb, A. A. Dhanagare, U. T. Arbat
{"title":"Logarithmic \\({\\varvec{f}}({\\varvec{Q}})\\) gravity with parametrization of deceleration parameter and energy conditions","authors":"S. N. Bayaskar,&nbsp;A. A. Q. Shoeb,&nbsp;A. A. Dhanagare,&nbsp;U. T. Arbat","doi":"10.1007/s12036-025-10089-1","DOIUrl":null,"url":null,"abstract":"<div><p>This research focuses on parametrization of deceleration parameter within the structure of modified symmetric teleparallel gravity or <span>\\(f\\left(Q\\right)\\)</span> gravity, where <span>\\(Q\\)</span> represents the nonmetricity scalar. To explore evolutionary timeline of the Universe, we considered the logarithmic form: <span>\\(f\\left(Q\\right)=m+n \\text\\,{\\rm{{ln}}}(Q)\\)</span>, where <span>\\(m\\)</span> and <span>\\(n\\)</span> are constants. In this context, we utilize a particular form of deceleration parameter given by <span>\\(q\\left(z\\right)=\\frac{1}{2}+\\frac{{q}_{1}z+{q}_{2}}{{(1+z)}^{2}},\\)</span> where <span>\\({q}_{1}\\)</span>, <span>\\({q}_{2}\\)</span> and redshift, <span>\\(z\\)</span> are the parameters. This form allows a transition from a decelerating phase to an accelerating phase. Solution for the Hubble parameter is derived using the given parametric form of <span>\\(q\\)</span>, which is then applied to the Friedmann equations. Following this, we estimated the model parameters’ best-fit values by using 115 supernovae Ia data points and Planck Collaboration (2018). We also focus on testing energy conditions in the context of cosmological acceleration. Moreover, we analysed the evolution of density, pressure, equation of state (EoS) parameter and <i>Om</i>(<i>z</i>) diagnostics to understand accelerated expansion phase of the Universe.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-025-10089-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on parametrization of deceleration parameter within the structure of modified symmetric teleparallel gravity or \(f\left(Q\right)\) gravity, where \(Q\) represents the nonmetricity scalar. To explore evolutionary timeline of the Universe, we considered the logarithmic form: \(f\left(Q\right)=m+n \text\,{\rm{{ln}}}(Q)\), where \(m\) and \(n\) are constants. In this context, we utilize a particular form of deceleration parameter given by \(q\left(z\right)=\frac{1}{2}+\frac{{q}_{1}z+{q}_{2}}{{(1+z)}^{2}},\) where \({q}_{1}\), \({q}_{2}\) and redshift, \(z\) are the parameters. This form allows a transition from a decelerating phase to an accelerating phase. Solution for the Hubble parameter is derived using the given parametric form of \(q\), which is then applied to the Friedmann equations. Following this, we estimated the model parameters’ best-fit values by using 115 supernovae Ia data points and Planck Collaboration (2018). We also focus on testing energy conditions in the context of cosmological acceleration. Moreover, we analysed the evolution of density, pressure, equation of state (EoS) parameter and Om(z) diagnostics to understand accelerated expansion phase of the Universe.

对数\({\varvec{f}}({\varvec{Q}})\)重力与减速参数和能量条件参数化
本文主要研究改进对称远平行重力或\(f\left(Q\right)\)重力结构中的减速参数的参数化,其中\(Q\)为非度量标量。为了探索宇宙的进化时间线,我们考虑了对数形式:\(f\left(Q\right)=m+n \text\,{\rm{{ln}}}(Q)\),其中\(m\)和\(n\)是常数。在这种情况下,我们利用\(q\left(z\right)=\frac{1}{2}+\frac{{q}_{1}z+{q}_{2}}{{(1+z)}^{2}},\)给出的减速参数的特殊形式,其中\({q}_{1}\), \({q}_{2}\)和红移,\(z\)是参数。这种形式允许从减速阶段过渡到加速阶段。利用\(q\)给出的参数形式推导出哈勃参数的解,然后将其应用于弗里德曼方程。在此之后,我们利用115个超新星Ia数据点和普朗克合作(2018)估计了模型参数的最佳拟合值。我们也专注于在宇宙加速的背景下测试能量条件。此外,我们还分析了密度、压力、状态方程(EoS)参数和Om(z)诊断的演变,以了解宇宙的加速膨胀阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Astrophysics and Astronomy
Journal of Astrophysics and Astronomy 地学天文-天文与天体物理
CiteScore
1.80
自引率
9.10%
发文量
84
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published. Articles submitted as letters will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信