{"title":"Rapid Preparation of C3N4/MgO Composites by Thermal Exfoliation Method and Their Photocatalytic Degradation Properties","authors":"S. S. Xu, Q. Q. Wang, C. W. Lai, J. X. Li","doi":"10.1134/S1990793125700563","DOIUrl":null,"url":null,"abstract":"<p>To enhance the photocatalytic performance of C<sub>3</sub>N<sub>4</sub> materials, g-C<sub>3</sub>N<sub>4</sub>/MgO heterojunction composites were efficiently synthesized from C<sub>3</sub>N<sub>4</sub> and Mg(OH)<sub>2</sub> through a rapid heat treatment method. The photocatalytic degradation efficacy of the catalysts was assessed using methylene blue as the target pollutant under simulated solar irradiation. The findings revealed that rapid heat treatment facilitated the oxidative and thermal exfoliation of C<sub>3</sub>N<sub>4</sub> powders, which subsequently formed micron-scale agglomerates upon compositing with MgO derived from the decomposition of Mg(OH)<sub>2</sub>. The resulting C<sub>3</sub>N<sub>4</sub>/MgO composites greatly broadened the spectrum of visible light utilization, thereby enhancing photocatalytic performance. Notably, the g-C<sub>3</sub>N<sub>4</sub>/10% MgO composites exhibited the highest activity, achieving a remarkable 99.2% degradation rate of a methylene blue solution at a concentration of 10 mg/L within 45 min of simulated solar exposure.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 4","pages":"878 - 886"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793125700563","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the photocatalytic performance of C3N4 materials, g-C3N4/MgO heterojunction composites were efficiently synthesized from C3N4 and Mg(OH)2 through a rapid heat treatment method. The photocatalytic degradation efficacy of the catalysts was assessed using methylene blue as the target pollutant under simulated solar irradiation. The findings revealed that rapid heat treatment facilitated the oxidative and thermal exfoliation of C3N4 powders, which subsequently formed micron-scale agglomerates upon compositing with MgO derived from the decomposition of Mg(OH)2. The resulting C3N4/MgO composites greatly broadened the spectrum of visible light utilization, thereby enhancing photocatalytic performance. Notably, the g-C3N4/10% MgO composites exhibited the highest activity, achieving a remarkable 99.2% degradation rate of a methylene blue solution at a concentration of 10 mg/L within 45 min of simulated solar exposure.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.