Vinoth Arul Raj Joseph Xavier, Sivarathnakumar Shanmugam, Senthil Kumar Muniasamy, Abeer A. AlObaid, Ismail Warad
{"title":"Adsorption Behaviour of Congo Red Dye by Biochar of Hemidesmus Indicus with Surface Modified by KOH","authors":"Vinoth Arul Raj Joseph Xavier, Sivarathnakumar Shanmugam, Senthil Kumar Muniasamy, Abeer A. AlObaid, Ismail Warad","doi":"10.3103/S0361521925700284","DOIUrl":null,"url":null,"abstract":"<p>Adsorption has numerous advantages over other wastewater treatment methods. Since it has the best sorption qualities and is a flexible adsorbent, biosorbent derived from biochar has been employed extensively to remove chemical species from their aqueous solutions. Hemidesmus Indicus, a new biosorbent, was used to study the biosorption of the anionic dye Congo red from aqueous solution. Variations in solution initial dye concentration, contact time, and temperature were used to determine the ideal sorption conditions. In batch adsorption investigations, Hemidesmus indices efficiency in eliminating Congo red dye as a bio adsorbent is investigated in this work, along with factors including dosage, pH, and beginning dye concentration. Congo red dye was shown to be more readily absorbed by surfaces treated with KOH compound, UV-visible adsorption spectroscopy is used to measure dye decolourization, and Analyzes surface morphology changes like pore structure, roughness, surface deposition or blocked pores are determined by FTIR and SEM with EDAX are used to examine the adsorbent’s altered surface properties. Congo red dye was shown to be more readily absorbed by surfaces treated with KOH compound, leading to elimination percentages of 51, 73.4, 54.26, 52.36, and 42.54%. Adsorption efficiency is evaluated using mathematical evaluation such as the Adams-Bohart and Yoon Nelson model; the equilibrium isotherm data model’s adsorption-derived R<sup>2</sup> values are 83.26, 91.5.67 and 74.51.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":"59 5","pages":"391 - 399"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521925700284","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Adsorption has numerous advantages over other wastewater treatment methods. Since it has the best sorption qualities and is a flexible adsorbent, biosorbent derived from biochar has been employed extensively to remove chemical species from their aqueous solutions. Hemidesmus Indicus, a new biosorbent, was used to study the biosorption of the anionic dye Congo red from aqueous solution. Variations in solution initial dye concentration, contact time, and temperature were used to determine the ideal sorption conditions. In batch adsorption investigations, Hemidesmus indices efficiency in eliminating Congo red dye as a bio adsorbent is investigated in this work, along with factors including dosage, pH, and beginning dye concentration. Congo red dye was shown to be more readily absorbed by surfaces treated with KOH compound, UV-visible adsorption spectroscopy is used to measure dye decolourization, and Analyzes surface morphology changes like pore structure, roughness, surface deposition or blocked pores are determined by FTIR and SEM with EDAX are used to examine the adsorbent’s altered surface properties. Congo red dye was shown to be more readily absorbed by surfaces treated with KOH compound, leading to elimination percentages of 51, 73.4, 54.26, 52.36, and 42.54%. Adsorption efficiency is evaluated using mathematical evaluation such as the Adams-Bohart and Yoon Nelson model; the equilibrium isotherm data model’s adsorption-derived R2 values are 83.26, 91.5.67 and 74.51.
期刊介绍:
The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.