Y. A. Dyakov, A. I. Rodionov, I. D. Rodionov, I. G. Stepanov, M. G. Golubkov
{"title":"Isomerization and Dissociation of (CH3)2COO Criegee Intermediate: Ab Initio and RRKM Study","authors":"Y. A. Dyakov, A. I. Rodionov, I. D. Rodionov, I. G. Stepanov, M. G. Golubkov","doi":"10.1134/S1990793125700502","DOIUrl":null,"url":null,"abstract":"<p>Criegee Intermediates (CIs), or carbonyl oxides, arise due to ozonolysis of alkenes, which are typical anthropogenic air pollutants. They play an important role in many chemical reactions occurring both in the lower and in the upper atmosphere of the Earth. Dissociation products of CIs may interact with other atmospheric compounds to produce hydroxyl (OH) radicals and other chemically active substances. Probably, these reactions are responsible for formation of nitric and sulfuric acids in the atmosphere. In the troposphere, CIs dissipate their initial internal energy through collisions with the bath atmospheric gases, and interact with chemically active atmospheric molecules. In the stratosphere and mesosphere carbonyl oxides can decay into chemically active fragments, which then trigger multiple secondary reactions. In this work the main dissociation reactions of (CH<sub>3</sub>)<sub>2</sub>COO Criegee intermediate molecule were studied. For that, <i>ab initio</i> B3LYP/CCSD(T) potential energy surface (PES) calculations have been performed followed by the estimation of rate constants and products yield by the RRKM method. It was found that the most probable dissociation products are OH, CH<sub>3</sub>COCH<sub>2</sub>, CH<sub>3</sub>, and CH<sub>3</sub>OCO radicals, as well as ethane and CO<sub>2</sub>.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 4","pages":"802 - 810"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793125700502","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Criegee Intermediates (CIs), or carbonyl oxides, arise due to ozonolysis of alkenes, which are typical anthropogenic air pollutants. They play an important role in many chemical reactions occurring both in the lower and in the upper atmosphere of the Earth. Dissociation products of CIs may interact with other atmospheric compounds to produce hydroxyl (OH) radicals and other chemically active substances. Probably, these reactions are responsible for formation of nitric and sulfuric acids in the atmosphere. In the troposphere, CIs dissipate their initial internal energy through collisions with the bath atmospheric gases, and interact with chemically active atmospheric molecules. In the stratosphere and mesosphere carbonyl oxides can decay into chemically active fragments, which then trigger multiple secondary reactions. In this work the main dissociation reactions of (CH3)2COO Criegee intermediate molecule were studied. For that, ab initio B3LYP/CCSD(T) potential energy surface (PES) calculations have been performed followed by the estimation of rate constants and products yield by the RRKM method. It was found that the most probable dissociation products are OH, CH3COCH2, CH3, and CH3OCO radicals, as well as ethane and CO2.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.