High-Strength and Thermal Insulating Polyimide Aerogel Fibers with Porous-Cortex-Dense-Core Structure Enabled by Hierarchical Phase Separation

IF 21.3 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yao Yu, Tiantian Xue, Chenyu Zhu, Longsheng Zhang, Feili Lai, Wei Fan, Tianxi Liu
{"title":"High-Strength and Thermal Insulating Polyimide Aerogel Fibers with Porous-Cortex-Dense-Core Structure Enabled by Hierarchical Phase Separation","authors":"Yao Yu,&nbsp;Tiantian Xue,&nbsp;Chenyu Zhu,&nbsp;Longsheng Zhang,&nbsp;Feili Lai,&nbsp;Wei Fan,&nbsp;Tianxi Liu","doi":"10.1007/s42765-025-00573-2","DOIUrl":null,"url":null,"abstract":"<div><p>Aerogel fibers with high porosity, low thermal conductivity and flexibility have shown great potential for applications in personal thermal management. However, the porous structure of aerogel fibers significantly compromises their mechanical properties like tensile strength. Here, we propose a high-strength polyimide aerogel fiber with porous-cortex-dense-core structure prepared via a coaxial wet-spinning based on hierarchical phase separation. Porous-cortex is formed due to fast phase separation rate induced by weak electrostatic and hydrogen-bonding interactions between the fluorinated polyimide and the ethanol. In contrast, the poly(amic acid) with high polarity index in the core-layer exhibits a slow phase separation rate, allowing the fibers to produce a dense nanoporous structure. With the dense core undertaking stress and porous cortex hindering heat transfer, the obtained aerogel fiber exhibits a higher tensile strength of up to 55.2 MPa compared to most reported aerogel fibers (0.15 –30 MPa) and a low thermal conductivity of 37.2 mW m<sup>−1</sup> K<sup>−1</sup>. This work offers a new way to prepare strong aerogel fibers and broadens their applications in thermal protection and infrared stealth.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 5","pages":"1605 - 1614"},"PeriodicalIF":21.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00573-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aerogel fibers with high porosity, low thermal conductivity and flexibility have shown great potential for applications in personal thermal management. However, the porous structure of aerogel fibers significantly compromises their mechanical properties like tensile strength. Here, we propose a high-strength polyimide aerogel fiber with porous-cortex-dense-core structure prepared via a coaxial wet-spinning based on hierarchical phase separation. Porous-cortex is formed due to fast phase separation rate induced by weak electrostatic and hydrogen-bonding interactions between the fluorinated polyimide and the ethanol. In contrast, the poly(amic acid) with high polarity index in the core-layer exhibits a slow phase separation rate, allowing the fibers to produce a dense nanoporous structure. With the dense core undertaking stress and porous cortex hindering heat transfer, the obtained aerogel fiber exhibits a higher tensile strength of up to 55.2 MPa compared to most reported aerogel fibers (0.15 –30 MPa) and a low thermal conductivity of 37.2 mW m−1 K−1. This work offers a new way to prepare strong aerogel fibers and broadens their applications in thermal protection and infrared stealth.

Graphical Abstract

采用分层相分离技术制备具有多孔致密芯结构的高强绝热聚酰亚胺气凝胶纤维
气凝胶纤维具有高孔隙率、低导热性和柔韧性等优点,在个人热管理方面显示出巨大的应用潜力。然而,气凝胶纤维的多孔结构极大地损害了它们的力学性能,如抗拉强度。在这里,我们提出了一种高强度的聚酰亚胺气凝胶纤维,具有多孔芯密芯结构,通过同轴湿纺基于分层相分离。由于氟化聚酰亚胺与乙醇之间的弱静电和氢键相互作用导致了快速的相分离速率,从而形成了多孔皮质。相反,芯层中极性指数高的聚胺酸表现出缓慢的相分离速率,使纤维产生致密的纳米孔结构。由于致密的气凝胶纤维芯承受应力,多孔的气凝胶纤维皮层阻碍热传递,与大多数报道的气凝胶纤维(0.15 -30 MPa)相比,所获得的气凝胶纤维的抗拉强度高达55.2 MPa,导热系数为37.2 mW m−1 K−1。本研究为制备强气凝胶纤维提供了新的途径,拓宽了其在热防护和红外隐身方面的应用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信