Maps preserving the maximal numerical range of the triple product of operators

IF 0.5 4区 数学 Q3 MATHEMATICS
Abdellatif Bourhim, Mohamed Mabrouk
{"title":"Maps preserving the maximal numerical range of the triple product of operators","authors":"Abdellatif Bourhim,&nbsp;Mohamed Mabrouk","doi":"10.1007/s00013-025-02148-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathscr {L}(\\mathscr {H})\\)</span> be the algebra of all bounded linear operators on a complex Hilbert space <span>\\(\\mathscr {H}\\)</span>. For an operator <span>\\(T\\in \\mathscr {L}(\\mathscr {H})\\)</span>, let <span>\\(W_0(T)\\)</span> be the maximal numerical range of <i>T</i>. We show that a map <span>\\(\\varphi \\)</span> from <span>\\(\\mathscr {L}(\\mathscr {H})\\)</span> onto itself satisfies </p><div><div><span>$$\\begin{aligned} W_0\\left( \\varphi (S)\\varphi (T)\\varphi (S)\\right) ~=~W_0(STS), \\qquad (T,~S\\in \\mathscr {L}(\\mathscr {H})), \\end{aligned}$$</span></div></div><p>if and only if there are a unitary operator <span>\\(U\\in \\mathscr {L}(\\mathscr {H})\\)</span> and <span>\\(\\lambda \\in \\mathbb {C}\\)</span> such that <span>\\(\\lambda ^3=1\\)</span> and either <span>\\(\\varphi (T)= \\lambda UTU^*\\)</span> for all <span>\\(T\\in \\mathscr {L}(\\mathscr {H})\\)</span>, or <span>\\(\\varphi (T)= \\lambda UT^\\top U^*\\)</span> for all <span>\\(T\\in \\mathscr {L}(\\mathscr {H})\\)</span>. Here, <span>\\(T^\\top \\)</span> denotes the transpose of any operator <span>\\(T\\in \\mathscr {L}(\\mathscr {H})\\)</span> relative to a fixed but arbitrary orthonormal base of <span>\\(\\mathscr {H}\\)</span>. When the triple product “<i>STS</i>” is replaced by the skew-triple product “<span>\\(TS^*T\\)</span>”, we arrive at the same conclusion but with <span>\\(\\lambda =1\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 3","pages":"311 - 321"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02148-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathscr {L}(\mathscr {H})\) be the algebra of all bounded linear operators on a complex Hilbert space \(\mathscr {H}\). For an operator \(T\in \mathscr {L}(\mathscr {H})\), let \(W_0(T)\) be the maximal numerical range of T. We show that a map \(\varphi \) from \(\mathscr {L}(\mathscr {H})\) onto itself satisfies

$$\begin{aligned} W_0\left( \varphi (S)\varphi (T)\varphi (S)\right) ~=~W_0(STS), \qquad (T,~S\in \mathscr {L}(\mathscr {H})), \end{aligned}$$

if and only if there are a unitary operator \(U\in \mathscr {L}(\mathscr {H})\) and \(\lambda \in \mathbb {C}\) such that \(\lambda ^3=1\) and either \(\varphi (T)= \lambda UTU^*\) for all \(T\in \mathscr {L}(\mathscr {H})\), or \(\varphi (T)= \lambda UT^\top U^*\) for all \(T\in \mathscr {L}(\mathscr {H})\). Here, \(T^\top \) denotes the transpose of any operator \(T\in \mathscr {L}(\mathscr {H})\) relative to a fixed but arbitrary orthonormal base of \(\mathscr {H}\). When the triple product “STS” is replaced by the skew-triple product “\(TS^*T\)”, we arrive at the same conclusion but with \(\lambda =1\).

保留算子的三重积的最大数值范围的映射
让 \(\mathscr {L}(\mathscr {H})\) 是复希尔伯特空间上所有有界线性算子的代数 \(\mathscr {H}\)。对于一个算子 \(T\in \mathscr {L}(\mathscr {H})\),让 \(W_0(T)\) 是t的最大数值范围 \(\varphi \) 从 \(\mathscr {L}(\mathscr {H})\) Onto本身满足 $$\begin{aligned} W_0\left( \varphi (S)\varphi (T)\varphi (S)\right) ~=~W_0(STS), \qquad (T,~S\in \mathscr {L}(\mathscr {H})), \end{aligned}$$当且仅当有一个酉算子 \(U\in \mathscr {L}(\mathscr {H})\) 和 \(\lambda \in \mathbb {C}\) 这样 \(\lambda ^3=1\) 或者 \(\varphi (T)= \lambda UTU^*\) 对所有人 \(T\in \mathscr {L}(\mathscr {H})\),或 \(\varphi (T)= \lambda UT^\top U^*\) 对所有人 \(T\in \mathscr {L}(\mathscr {H})\)。这里, \(T^\top \) 表示任意算子的转置 \(T\in \mathscr {L}(\mathscr {H})\) 的固定但任意的标准正交基底 \(\mathscr {H}\)。当三重积“STS”被斜三重积“\(TS^*T\),我们得出了相同的结论,但与 \(\lambda =1\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信