Predicting Martian Regolith Permittivity Using Deep Learning Methods—Revisiting Southern Utopia Planitia

IF 4.4
Qinfen Cai;Feng Zhou;Iraklis Giannakis;Sijing Liu;Xiangyun Hu
{"title":"Predicting Martian Regolith Permittivity Using Deep Learning Methods—Revisiting Southern Utopia Planitia","authors":"Qinfen Cai;Feng Zhou;Iraklis Giannakis;Sijing Liu;Xiangyun Hu","doi":"10.1109/LGRS.2025.3604251","DOIUrl":null,"url":null,"abstract":"China’s first Mars mission [Tianwen-1 (TW-1)] successfully touched down in the Utopia Planitia of Mars with a rover subsurface penetrating radar (RoPeR) carried for exploring the regolith dielectric properties. Hyperbolic fitting is a conventional method to infer the subsurface material relative permittivity from ground penetrating radar (GPR) data. However, it is difficult to directly extract valid hyperbolas from the RoPeR data. Inspired by the recently developed deep learning-based geophysical inversion method to estimate the subsurface wave velocities through GPR data, an improved deep learning architecture is proposed to infer the Martian regolith relative permittivity from the RoPeR data, with self-attention (SA) and cascade modules are introduced into the network. The improved cascade and SA modules can improve the inversion efficiency and mitigate the scatter-diffraction effect of the predicted results. The inverted relative permittivity from the first 60 ns of the RoPeR data demonstrates an approximate line with a mean value of 4.73 in the regolith of interest. The very limited fluctuation of relative permittivity implies that no explicit stratification existing in the investigated regolith, agreeing with the previous studies.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11145121/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

China’s first Mars mission [Tianwen-1 (TW-1)] successfully touched down in the Utopia Planitia of Mars with a rover subsurface penetrating radar (RoPeR) carried for exploring the regolith dielectric properties. Hyperbolic fitting is a conventional method to infer the subsurface material relative permittivity from ground penetrating radar (GPR) data. However, it is difficult to directly extract valid hyperbolas from the RoPeR data. Inspired by the recently developed deep learning-based geophysical inversion method to estimate the subsurface wave velocities through GPR data, an improved deep learning architecture is proposed to infer the Martian regolith relative permittivity from the RoPeR data, with self-attention (SA) and cascade modules are introduced into the network. The improved cascade and SA modules can improve the inversion efficiency and mitigate the scatter-diffraction effect of the predicted results. The inverted relative permittivity from the first 60 ns of the RoPeR data demonstrates an approximate line with a mean value of 4.73 in the regolith of interest. The very limited fluctuation of relative permittivity implies that no explicit stratification existing in the investigated regolith, agreeing with the previous studies.
利用深度学习方法预测火星风化层介电常数——重访南部乌托邦平原
中国首个火星探测任务“天文一号”(tw1)成功降落在火星乌托邦平原,搭载了探测车地下穿透雷达(RoPeR),用于探测火星风化层介电特性。双曲拟合是利用探地雷达资料推断地下物质相对介电常数的常用方法。然而,很难直接从RoPeR数据中提取有效的双曲线。借鉴近年来发展起来的基于深度学习的地球物理反演方法,利用探地雷达数据估计地下波速度,提出了一种改进的深度学习架构,利用RoPeR数据推断火星表土相对介电常数,并在网络中引入自关注(SA)和级联模块。改进的级联和SA模块可以提高反演效率,减轻预测结果的散射-衍射效应。从RoPeR数据的前60 ns得到的反向相对介电常数在感兴趣的风化层中显示出一条平均值为4.73的近似线。相对介电常数的波动非常有限,表明所研究的风化层不存在明显的分层,这与前人的研究一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信