A. Errehymy , S.K. Maurya , O. Donmez , Z. Umbetova , J. Rayimbaev , M. Motawi Khashan , Mohamed R. Eid
{"title":"Testing linear non-minimal coupling in f(Q,T) gravity using X-ray binary pulsars constrained by NICER observations","authors":"A. Errehymy , S.K. Maurya , O. Donmez , Z. Umbetova , J. Rayimbaev , M. Motawi Khashan , Mohamed R. Eid","doi":"10.1016/j.dark.2025.102055","DOIUrl":null,"url":null,"abstract":"<div><div>X-ray binary pulsars are valuable for testing alternative gravity theories like <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity because they host neutron stars (NSs) with strong gravitational fields and measurable matter interactions. The linear non-minimal coupling between <span><math><mi>Q</mi></math></span> and <span><math><mi>T</mi></math></span> can affect the star’s structure and emission, which Neutron Star Interior Composition Explorer (NICER) can constrain through high-precision X-ray timing and spectral data. In this work, we explore the physical implications of such couplings within the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Q</mi><mo>+</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>T</mi></mrow></math></span> gravity framework, focusing on realistic, anisotropic stellar configurations. Using analytical methods, we model spherically symmetric NSs and calibrate our approach against well-observed pulsars including Her X-1, 4U 1538-52, and SMC X-1. The resulting configurations satisfy essential physical requirements: positive, finite energy density and pressure profiles; regularity at the center; vanishing radial pressure at the surface; and stable, causal behavior throughout. Pressure anisotropy remains positive, contributing to hydrostatic balance via a repulsive force that opposes gravity. The radial and tangential sound speeds remain subluminal, and the adiabatic index <span><math><mi>Γ</mi></math></span> exceeds <span><math><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></math></span> across the star, increasing outward—indicating resistance to collapse under perturbations. The <span><math><mrow><mi>M</mi><mo>−</mo><mi>R</mi></mrow></math></span> relations predicted by the model align well with observations. For example, with <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span>, we find <span><math><mrow><mi>M</mi><mo>≈</mo><mn>0</mn><mo>.</mo><mn>95</mn><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and <span><math><mrow><mi>R</mi><mo>≈</mo><mn>9</mn><mo>.</mo><mn>18</mn></mrow></math></span> km; increasing <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to 1.0 gives <span><math><mrow><mi>M</mi><mo>≈</mo><mn>1</mn><mo>.</mo><mn>19</mn><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and <span><math><mrow><mi>R</mi><mo>≈</mo><mn>11</mn><mo>.</mo><mn>39</mn></mrow></math></span> km. Similarly, for <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn></mrow></math></span>, we obtain <span><math><mrow><mi>M</mi><mo>≈</mo><mn>1</mn><mo>.</mo><mn>21</mn><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and <span><math><mrow><mi>R</mi><mo>≈</mo><mn>11</mn><mo>.</mo><mn>61</mn></mrow></math></span> km, while increasing <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> to 0.8 yields <span><math><mrow><mi>M</mi><mo>≈</mo><mn>1</mn><mo>.</mo><mn>19</mn><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and <span><math><mrow><mi>R</mi><mo>≈</mo><mn>11</mn><mo>.</mo><mn>38</mn></mrow></math></span> km. These trends highlight the role of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in controlling stellar compactness and stiffness. The model naturally captures a broad range of NS configurations, without relying on a fixed equation of state (EOS), and remains consistent with nuclear saturation density constraints. Altogether, these results establish <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity as a physically robust and observationally viable extension of general relativity (GR)—one capable of capturing the internal dynamics of compact stars with precision.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102055"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425002481","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray binary pulsars are valuable for testing alternative gravity theories like gravity because they host neutron stars (NSs) with strong gravitational fields and measurable matter interactions. The linear non-minimal coupling between and can affect the star’s structure and emission, which Neutron Star Interior Composition Explorer (NICER) can constrain through high-precision X-ray timing and spectral data. In this work, we explore the physical implications of such couplings within the gravity framework, focusing on realistic, anisotropic stellar configurations. Using analytical methods, we model spherically symmetric NSs and calibrate our approach against well-observed pulsars including Her X-1, 4U 1538-52, and SMC X-1. The resulting configurations satisfy essential physical requirements: positive, finite energy density and pressure profiles; regularity at the center; vanishing radial pressure at the surface; and stable, causal behavior throughout. Pressure anisotropy remains positive, contributing to hydrostatic balance via a repulsive force that opposes gravity. The radial and tangential sound speeds remain subluminal, and the adiabatic index exceeds across the star, increasing outward—indicating resistance to collapse under perturbations. The relations predicted by the model align well with observations. For example, with , we find and km; increasing to 1.0 gives and km. Similarly, for , we obtain and km, while increasing to 0.8 yields and km. These trends highlight the role of and in controlling stellar compactness and stiffness. The model naturally captures a broad range of NS configurations, without relying on a fixed equation of state (EOS), and remains consistent with nuclear saturation density constraints. Altogether, these results establish gravity as a physically robust and observationally viable extension of general relativity (GR)—one capable of capturing the internal dynamics of compact stars with precision.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.