Dimension of diagonal self-affine measures with exponentially separated projections

IF 1.5 1区 数学 Q1 MATHEMATICS
Zhou Feng
{"title":"Dimension of diagonal self-affine measures with exponentially separated projections","authors":"Zhou Feng","doi":"10.1016/j.aim.2025.110511","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>μ</em> be a self-affine measure associated with a diagonal affine iterated function system (IFS) <span><math><mi>Φ</mi><mo>=</mo><msub><mrow><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>↦</mo><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi><mo>,</mo><mn>1</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>d</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>d</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Λ</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and a probability vector <span><math><mi>p</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Λ</mi></mrow></msub></math></span>. For <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>d</mi></math></span>, denote the <em>j</em>-th Lyapunov exponent by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Λ</mi></mrow></msub><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>log</mi><mo>⁡</mo><mo>|</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>|</mo></math></span>, and define the IFS induced by Φ on the <em>j</em>-th coordinate as <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mo>{</mo><mi>x</mi><mo>↦</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Λ</mi></mrow></msub></math></span>. We prove that if <span><math><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>j</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>≠</mo><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> for <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>j</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mi>d</mi></math></span>, and <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is exponentially separated for <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>d</mi></math></span>, then the dimension of <em>μ</em> is the minimum of <em>d</em> and its Lyapunov dimension. This confirms a conjecture of Rapaport <span><span>[52]</span></span> by removing the additional assumption that the linear parts of the maps in Φ are contained in a 1-dimensional subgroup. One of the main ingredients of the proof involves disintegrating <em>μ</em> into random measures with convolution structure. In the course of the proof, we establish new results on dimension and entropy increase for these random measures.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110511"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004098","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let μ be a self-affine measure associated with a diagonal affine iterated function system (IFS) Φ={(x1,,xd)(ri,1x1+ti,1,,ri,dxd+ti,d)}iΛ on Rd and a probability vector p=(pi)iΛ. For 1jd, denote the j-th Lyapunov exponent by χj:=iΛpilog|ri,j|, and define the IFS induced by Φ on the j-th coordinate as Φj:={xri,jx+ti,j}iΛ. We prove that if χj1χj2 for 1j1<j2d, and Φj is exponentially separated for 1jd, then the dimension of μ is the minimum of d and its Lyapunov dimension. This confirms a conjecture of Rapaport [52] by removing the additional assumption that the linear parts of the maps in Φ are contained in a 1-dimensional subgroup. One of the main ingredients of the proof involves disintegrating μ into random measures with convolution structure. In the course of the proof, we establish new results on dimension and entropy increase for these random measures.
具有指数分离投影的对角自仿射测度的维数
设μ是一个自仿射测度,它与一个对角仿射迭代函数系统(IFS) Φ={(x1,…,xd)∑(ri,1x1+ti,1,…,ri,dxd+ti,d)}i∈Λ和一个概率向量p=(pi)i∈Λ相关联。对于1≤j≤d,用χj:=∑i∈Λ−pilog (|) ri,j|表示第j个Lyapunov指数,定义Φ在第j个坐标上诱导的IFS为Φj:={x∈ri,jx+ti,j}i∈Λ。证明了当1≤j1<;j2≤d时χj1≠χj2,且Φj在1≤j≤d时呈指数分离,则μ的维数是d及其Lyapunov维数的最小值。这证实了Rapaport[52]的一个猜想,通过去除Φ中映射的线性部分包含在一维子群中的额外假设。证明的主要内容之一是将μ分解成具有卷积结构的随机测度。在证明过程中,我们建立了这些随机测度的维数和熵增的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信