{"title":"Dimension of diagonal self-affine measures with exponentially separated projections","authors":"Zhou Feng","doi":"10.1016/j.aim.2025.110511","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>μ</em> be a self-affine measure associated with a diagonal affine iterated function system (IFS) <span><math><mi>Φ</mi><mo>=</mo><msub><mrow><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>↦</mo><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi><mo>,</mo><mn>1</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>d</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>d</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Λ</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and a probability vector <span><math><mi>p</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Λ</mi></mrow></msub></math></span>. For <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>d</mi></math></span>, denote the <em>j</em>-th Lyapunov exponent by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Λ</mi></mrow></msub><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>log</mi><mo></mo><mo>|</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>|</mo></math></span>, and define the IFS induced by Φ on the <em>j</em>-th coordinate as <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mo>{</mo><mi>x</mi><mo>↦</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Λ</mi></mrow></msub></math></span>. We prove that if <span><math><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>j</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>≠</mo><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> for <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>j</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mi>d</mi></math></span>, and <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is exponentially separated for <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>d</mi></math></span>, then the dimension of <em>μ</em> is the minimum of <em>d</em> and its Lyapunov dimension. This confirms a conjecture of Rapaport <span><span>[52]</span></span> by removing the additional assumption that the linear parts of the maps in Φ are contained in a 1-dimensional subgroup. One of the main ingredients of the proof involves disintegrating <em>μ</em> into random measures with convolution structure. In the course of the proof, we establish new results on dimension and entropy increase for these random measures.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110511"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004098","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let μ be a self-affine measure associated with a diagonal affine iterated function system (IFS) on and a probability vector . For , denote the j-th Lyapunov exponent by , and define the IFS induced by Φ on the j-th coordinate as . We prove that if for , and is exponentially separated for , then the dimension of μ is the minimum of d and its Lyapunov dimension. This confirms a conjecture of Rapaport [52] by removing the additional assumption that the linear parts of the maps in Φ are contained in a 1-dimensional subgroup. One of the main ingredients of the proof involves disintegrating μ into random measures with convolution structure. In the course of the proof, we establish new results on dimension and entropy increase for these random measures.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.