Comparative study on noise-augmented training and its effect on adversarial robustness in ASR systems

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Karla Pizzi , Matías Pizarro , Asja Fischer
{"title":"Comparative study on noise-augmented training and its effect on adversarial robustness in ASR systems","authors":"Karla Pizzi ,&nbsp;Matías Pizarro ,&nbsp;Asja Fischer","doi":"10.1016/j.csl.2025.101869","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate whether noise-augmented training can concurrently improve adversarial robustness in automatic speech recognition (ASR) systems. We conduct a comparative analysis of the adversarial robustness of four different ASR architectures, each trained under three different augmentation conditions: (1) background noise, speed variations, and reverberations; (2) speed variations only; (3) no data augmentation. We then evaluate the robustness of all resulting models against attacks with white-box or black-box adversarial examples. Our results demonstrate that noise augmentation not only enhances model performance on noisy speech but also improves the model’s robustness to adversarial attacks.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"96 ","pages":"Article 101869"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230825000944","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate whether noise-augmented training can concurrently improve adversarial robustness in automatic speech recognition (ASR) systems. We conduct a comparative analysis of the adversarial robustness of four different ASR architectures, each trained under three different augmentation conditions: (1) background noise, speed variations, and reverberations; (2) speed variations only; (3) no data augmentation. We then evaluate the robustness of all resulting models against attacks with white-box or black-box adversarial examples. Our results demonstrate that noise augmentation not only enhances model performance on noisy speech but also improves the model’s robustness to adversarial attacks.
ASR系统中噪声增强训练及其对对抗鲁棒性影响的比较研究
在这项研究中,我们探讨了噪声增强训练是否可以同时提高自动语音识别(ASR)系统的对抗鲁棒性。我们对四种不同ASR架构的对抗鲁棒性进行了比较分析,每种架构都在三种不同的增强条件下进行了训练:(1)背景噪声、速度变化和混响;(2)只能变速;(3)无数据增强。然后,我们用白盒或黑盒对抗示例评估所有结果模型对攻击的鲁棒性。我们的研究结果表明,噪声增强不仅提高了模型对噪声语音的性能,而且提高了模型对对抗性攻击的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Speech and Language
Computer Speech and Language 工程技术-计算机:人工智能
CiteScore
11.30
自引率
4.70%
发文量
80
审稿时长
22.9 weeks
期刊介绍: Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language. The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信