{"title":"Comparative study on noise-augmented training and its effect on adversarial robustness in ASR systems","authors":"Karla Pizzi , Matías Pizarro , Asja Fischer","doi":"10.1016/j.csl.2025.101869","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate whether noise-augmented training can concurrently improve adversarial robustness in automatic speech recognition (ASR) systems. We conduct a comparative analysis of the adversarial robustness of four different ASR architectures, each trained under three different augmentation conditions: (1) background noise, speed variations, and reverberations; (2) speed variations only; (3) no data augmentation. We then evaluate the robustness of all resulting models against attacks with white-box or black-box adversarial examples. Our results demonstrate that noise augmentation not only enhances model performance on noisy speech but also improves the model’s robustness to adversarial attacks.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"96 ","pages":"Article 101869"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230825000944","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate whether noise-augmented training can concurrently improve adversarial robustness in automatic speech recognition (ASR) systems. We conduct a comparative analysis of the adversarial robustness of four different ASR architectures, each trained under three different augmentation conditions: (1) background noise, speed variations, and reverberations; (2) speed variations only; (3) no data augmentation. We then evaluate the robustness of all resulting models against attacks with white-box or black-box adversarial examples. Our results demonstrate that noise augmentation not only enhances model performance on noisy speech but also improves the model’s robustness to adversarial attacks.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.